【题目】在如图所示的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a<0,b>0,c>0;②b2﹣4ac=0;③ <c;④关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有( )
A.1条
B.2条
C.3条
D.4条
【答案】A
【解析】解:①抛物线的开口方向向下,则a<0, 抛物线与y轴交于正半轴,则c>0.
抛物线的对称轴位于y轴的左侧,则a、b同号,则b<0.
故①错误;②据图所知,抛物线与x轴有2个不同的交点,则b2﹣4ac>0,故②错误;③∵a<0,∴ <0,∴c﹣ >c,∴ >c;故③错误;④据图所知,抛物线与x轴有2个不同的交点,其中一个交点位于x的正半轴,则关于x的一元二次方程ax2+bx+c=0有一个正根,故④正确;故选:A.
【考点精析】认真审题,首先需要了解抛物线与坐标轴的交点(一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.).
科目:初中数学 来源: 题型:
【题目】若存在正常数a,b,使得x∈R有f(x+a)≤f(x)+b恒成立,则称f(x)为“限增函数”.给出下列三个函数:①f(x)=x2+x+1;② ;③f(x)=sin(x2),其中是“限增函数”的是( )
A.①②③
B.②③
C.①③
D.③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是( )
A.(0, )
B.( ,1)
C.(1,2)
D.(2,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图3所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.若蛋糕店一天制作17个生日蛋糕.
(1)求当天的利润y(单位:元)关于当天需求量n(单位:个,n∈N)的函数解析式;
(2)求当天的利润不低于750元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)本次共调查人 ,请在补全条形统计图并标出相应数据 ;
(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列树状图或列表说明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.
(1)点A的坐标是;抛物线l1的解析式是;
(2)当BM=3时,求b的值;
(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2 .
①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围;
(4)②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN的最小值与此时b的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= ,反比例函数y= (k>0)的图像过CD的中点E.
(1)求k的值;
(2)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图像上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).
(1)求线段CD的长。
(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?
(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.
①t为何值时,l经过点C?
②求当l经过点D时t的值,并求出此时刻线段PQ的长。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com