精英家教网 > 初中数学 > 题目详情

点(-1,3)不在直线上.


  1. A.
    y=-2x+1
  2. B.
    y=3x-6
  3. C.
    y=-x+2
  4. D.
    y=2x+5
B
分析:将点(-1,3)分别代入解析式,若等式成立,则点在直线上,若等式不成立,则点不在直线上.
解答:A、将点(-1,3)代入y=-2x+1得,3=-2×(-1)+1,成立,点(-1,3)在直线上;
B、将点(-1,3)代入y=3x-6得,3≠3×(-1)-6,不成立,点(-1,3)不在直线上;
C、将点(-1,3)代入y=-x+2得,3=-(-1)+2,成立,点(-1,3)在直线上;
D、将点(-1,3)代入y=2x+5得,3=2×(-1)+5,成立,点(-1,3)在直线上.
故选B.
点评:此题考查了函数图象上点的坐标特征,将坐标代入解析式即可验证点是否在函数图象上.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,AD=10,直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),精英家教网一直角边经过点C,另一直角边AB交于点E,我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通一模)已知:如图,直y=2x+b交x轴于点B,交y轴于点C,点A为x轴正半轴上一点,AO=CO,△ABC的面积为12.
(1)求b的值;
(2)若点P是线段AB中垂线上的点,是否存在这样的点P,使△PBC成为直角三角形?若存在,试直接写出所有符合条件的点P的坐标;若不存在,试说明理由;
(3)点Q为线段AB上一个动点(点Q与点A、B不重合),QE∥AC,交BC于点E,以QE为边,在点B的异侧作正方形QEFG.设AQ=m,△ABC与正方形QEFG的重叠部分的面积为S,试求S与m之间的函数关系式,并写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=6,AD=11.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边始终经过点C,另一直角边与AB交于点E.
(1)△CDP与△PAE相似吗?如果相似,请写出证明过程;
(2)当∠PCD=30°时,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知线段AB=4,点C是平面上一点(不与A,B重合),M、N分别是线段CA,CB的中点.
(1)当C在线段AB上时,如图,求MN的长;
(1)当C在线段AB的延长线上时,画出图形,并求MN长;
(2)当C在直段AB外时,画出图形,量一量,写出MN的长(不写理由)

查看答案和解析>>

同步练习册答案