精英家教网 > 初中数学 > 题目详情
如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:

①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=(BC-AD),⑤四边形
EFGH是菱形.其中正确的个数是【   】
A.1          B.2          C.3          D.4  
C

专题:推理填空题.
分析:根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.
解答:解:∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴EF=CD,FG=AB,GH=CD,HE=AB,
∵AB=CD,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形,
∴①EG⊥FH,正确;
②四边形EFGH是矩形,错误;
③HF平分∠EHG,正确;
④当AD∥BC,如图所示:E,G分别为BD,AC中点,
∴连接CD,延长EG到CD上一点N,
∴EN=BC,GN=AD,
∴EG=(BC-AD),只有AD∥BC是才可以成立,而本题AD与BC很显然不平行,故本小题错误;
⑤四边形EFGH是菱形,正确.
综上所述,①③⑤共3个正确.
故选C.
点评:本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形中,交于点,垂足分别为.试比较.BE与CF的大小,并说明理由

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,AB<AD,点E在AD上,且CA平分∠BCE.若矩形
ABCD的周长为10,则△CDE的周长为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等腰梯形ABCD中,AD∥BC,AE∥DC,∠B=60º,BC=3,△ABE的周长为6,
则等腰梯形的周长是 ……………………………………………………(     )   
A.8B.10C.12D.16

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

有一张矩形纸片,将纸片折叠使两点重合,
那么折痕长是            

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图, 等腰梯形两底之差等于一腰的长,那么这个梯形较小内角的度数是
A.  B.  C. D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011•陕西)如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(11·曲靖)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,
则四边形DBFE的周长为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·佛山)阅读材料
我们经常通过认识一个事物的局部或其特殊类型,来逐步认识这个事物;
比如我们通过学习两类特殊的四边形,即平行四边形和梯形(继续学习它们的特殊类型如矩形、等腰梯形等)来逐步认识四边形;
我们对课本里特殊四边形的学习,一般先学习图形的定义,再探索发现其性质和判定方法,然后通过解决简单的问题巩固所学知识;
请解决以下问题:
如图,我们把满足AB=CD、CB=CD且AB≠BC的四边形ABCD叫做“筝形”;
(1)写出筝形的两个性质(定义除外);
(2)写出筝形的两个判定方法(定义除外),并选出一个进行证明;

查看答案和解析>>

同步练习册答案