精英家教网 > 初中数学 > 题目详情
12.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.

分析 (1)由四边形ABCD是矩形,根据折叠的性质,易证得△EFG是等腰三角形,即可得GF=EC,又由GF∥EC,即可得四边形CEGF为平行四边形,根据邻边相等的平行四边形是菱形,即可得四边形BGEF为菱形;
(2)如图2,当G与A重合时,CE取最大值,由折叠的性质得CD=DG,∠CDE=∠GDE=45°,推出四边形CEGD是矩形,根据矩形的性质即可得到CE=CD=AB=3;如图1,当F与D重合时,CE取最小值,由折叠的性质得AE=CE,根据勾股定理即可得到结论.

解答 (1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠GFE=∠FEC,
∵图形翻折后点G与点C重合,EF为折线,
∴∠GEF=∠FEC,
∴∠GFE=∠FEG,
∴GF=GE,
∵图形翻折后BC与GE完全重合,
∴BE=EC,
∴GF=EC,
∴四边形CEGF为平行四边形,
∴四边形CEGF为菱形;

(2)由(1)得四边形CEGF是菱形,
∴CE=CD=AB=3;
如图2,当G与A重合时,CE取最大值,
由折叠的性质得AE=CE,
∵∠B=90°,
∴AE2=AB2+BE2,即CE2=32+(9-CE)2
∴CE=5,
∴线段CE的取值范围3≤CE≤5.

点评 本题考查了翻折变换-折叠问题,菱形的判定,线段的最值问题,矩形的性质,勾股定理,正确的作出图形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.(1)解不等式组:$\left\{\begin{array}{l}{3x+1≤2(x+1),①}\\{\frac{x+1}{2}≥-1.①}\end{array}\right.$
(2)先化简($\frac{x}{x-3}$-$\frac{x}{3-x}$)÷$\frac{2x}{{x}^{2}-9}$,然后选取一个你认为符合题意的x的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知关于x的分式方程$\frac{k}{x+1}$+$\frac{x+k}{x-1}$=1的解为负数,则k的取值范围是k>-$\frac{1}{2}$且k≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n个图案中有4n+1个涂有阴影的小正方形(用含有n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=$\left\{\begin{array}{l}{-2x+140(40≤x<60)}\\{-x+80(60≤x≤70)}\end{array}\right.$.
(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;
(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?
(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,则该几何体的表面积为(  )
A.B.C.2π+4D.3π+4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.
【特例探究】
(1)如图1,当tan∠PAB=1,c=4$\sqrt{2}$时,a=4$\sqrt{5}$,b=4$\sqrt{5}$;
如图2,当∠PAB=30°,c=2时,a=$\sqrt{7}$,b=$\sqrt{13}$;
【归纳证明】
(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.
【拓展证明】
(3)如图4,?ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3$\sqrt{5}$,AB=3,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书教育活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:
最喜爱的一种活动统计表
活动形式征文讲故事演讲网上竞答其他
人数603039ab
(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度?
(2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.
(1)求斜坡CD的高度DE;
(2)求大楼AB的高度(结果保留根号)

查看答案和解析>>

同步练习册答案