甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4-k)张,乙每次取6张或(6-k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有________张.
|
解:设甲a次取(4-k)张,乙b次取(6-k)张,则甲(15-a)次取4张,乙(17-b)次取6张, 则甲取牌(60-ka)张,乙取牌(102-kb)张 则总共取牌:N=a(4-k)+4(15-a)+b(6-k)+6(17-b)=-k(a+b)+162, 从而要使牌最少,则可使N最小,因为k为正数,函数为减函数,则可使(a+b)尽可能的大, 由题意得,a≤15,b≤16, 又最终两人所取牌的总张数恰好相等, 故k(b-a)=42,而0<k<4,b-a为整数, 则由整除的知识,可得k可为1,2,3, ①当k=1时,b-a=42,因为a≤15,b≤16,所以这种情况舍去; ②当k=2时,b-a=21,因为a≤15,b≤16,所以这种情况舍去; ③当k=3时,b-a=14,此时可以符合题意, 综上可得:要保证a≤15,b≤16,b-a=14,(a+b)值最大, 则可使b=16,a=2;b=15,a=1;b=14,a=0; 当b=16,a=2时,a+b最大,a+b=18, 继而可确定k=3,(a+b)=18, 所以N=-3×18+162=108张. 故答案为:108. |
|
应用类问题. |
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012年初中毕业升学考试(重庆卷)数学(解析版) 题型:填空题
甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张.
查看答案和解析>>
科目:初中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:
甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com