精英家教网 > 初中数学 > 题目详情

【题目】如图1,△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.


(1)将图1中的△DCE绕C点顺时针方向旋转至∠BCE=∠ACB的位置,分别延长AB,DE交于点F(如图2),此时,四边形BCEF为何种四边形?请证明你的结论;
(2)如果将图1中的△DCE绕C点顺时针旋转至∠BCE=2∠ACB的位置,连接AD,BE(如图3),证明四边形ABED为矩形;
(3)在(2)的条件下,四边形ABED有无可能成为正方形?如果有可能成为正方形,求出∠ABC的度数为多少?

【答案】
(1)

解:四边形BCEF是菱形,

理由:∵△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.

∴BC=CE,∠ABC=∠ACB=∠DCE=∠DEC,

∵∠BCE=∠ACB,

∴∠BCE=∠DEC,

∴BC∥DE,

∴∠ABC=∠F,

∴∠F=∠DEC

∴CE∥AB,

∴四边形BCEF是平行四边形,

∵BC=CE,

∴平行四边形BCEF是菱形;


(2)

解:∵∠ABC=∠ACB,∠BCE=2∠ACB,

∴∠BCE=2∠ABC,

∵BC=CE,

∴∠CBE= (180°﹣∠BCE)= (180°﹣2∠ABC)=90°﹣∠ABC,

∴∠CBE+∠ABC=90°,

∴∠ABE=90°,

同理:∠BAD=∠ADE=90°,

∴四边形ABED是矩形;


(3)

解:四边形ABED能成为正方形,

∵四边形ABED是正方形,

∴AB=AD,

∵AB=AC=CD,

∴AC=AD=CD,

∴△ACD是等边三角形,

∴∠ACD=60°,

∵∠BCE=2∠ACB,∠ABC=∠ACB=∠DCE,

∴∠ACB+∠BCE+∠DCE+∠ACD=360°,

∴∠ABC+2∠ABC+∠ABC=300°,

∴∠ABC=75°,


【解析】(1)由全等得出∠ABC=∠ACB=∠DCE=∠DEC,进而判断出BC∥DE,即可得出∠ABC=∠F,进而得出CE∥AB,即可得出结论;(2)由等腰三角形的性质求出∠ABE=90°,同理:∠BAD=∠ADE=90°,即可得出结论;(3)由正方形得出AB=AD,进而得出△ACD是等边三角形,即可求出∠ABC=75°.
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角),以及对菱形的判定方法的理解,了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB为⊙O直径,AC是⊙O的弦,∠BAC的平分线AD交⊙O于D,过点D作DE⊥AC交AC的延长线于点E,OE交AD于点F,cos∠BAC=

(1)求证:DE是⊙O的切线;
(2)若AF=8,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.
(1)求证:PD是⊙O的切线;
(2)求证:△PBD∽△DCA;
(3)当AB=6,AC=8时,求线段PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x(单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.
(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、 L/km.
(2)求线段AB所表示的y与x之间的函数表达式.
(3)速度是多少时,该汽车的耗油量最低?最低是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,点M运动的路径长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B的坐标为(4,0),经过点A点B抛物线y=x2+bx+c与y轴交于点C.

(1)求抛物线的关系式;
(2)△ABC的外接圆与轴交于点D,在抛物线上是否存在点M使SMBC=SDBC , 若存在,请求出点M的坐标.
(3)点P是直线y=﹣x上一个动点,连接PB,PC,当PB+PC+PO最小时,求点P的坐标及其最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x﹣ 与x,y轴分别交于点A,B,与反比例函数y= (k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.
(1)求点A的坐标.
(2)若AE=AC. ①求k的值.
②试判断点E与点D是否关于原点O成中心对称?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是(  )
A.|﹣2|=﹣2
B.
C.
D.

查看答案和解析>>

同步练习册答案