【题目】如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B的坐标为(4,0),经过点A点B抛物线y=x2+bx+c与y轴交于点C.
(1)求抛物线的关系式;
(2)△ABC的外接圆与轴交于点D,在抛物线上是否存在点M使S△MBC=S△DBC , 若存在,请求出点M的坐标.
(3)点P是直线y=﹣x上一个动点,连接PB,PC,当PB+PC+PO最小时,求点P的坐标及其最小值.
【答案】
(1)
解:设抛物线的解析式为y=a(x+1)(x﹣4).
由题意得可知:a=1.
所以抛物线的解析式为y=x2﹣3x﹣4.
(2)
解:如图所示:过点D作直线DM∥BC,交抛物线与点M和点M′.
∵DM∥BC,
∴S△MBC=S△DBC.
∵ODOC=OBOA,
∴4OD=4×1,解得DO=1.
∴D(0,1).
设直线BC的解析式为y=kx+b,将点B和点C的坐标代入得 ,解得k=1,b=﹣4.
∵DM∥BC,
∴直线DM的解析式为y=x+1.
将y=x+1代入y=x2﹣3x﹣4得:x2﹣3x﹣4=x+1,整理得:x2﹣4x﹣5=0,解得x=﹣1或x=5.
当x=﹣1时,y=0,
∴M′的坐标为(﹣1,0).
当x=5时,y=6.
∴M的坐标为(5,6).
综上所述,点M的坐标为(﹣1,0)或(5,6).
(3)
解:如图2所示:△OPC顺时针旋转60°得到△O′C′P′,连结C′P′、PP′、PB,过点C′作C′E⊥x轴,垂足为E.
由旋转的性质可知:CP′=CP,OP=OP′,∠POP′=60°.
∴△OPP′为等边三角形.
∴OP=PP′.
∴CP+PB+OP=C′P′+PB+PP′.
∴当点C′P′、PP′\PB在一条直线上时,CP+PB+OP有最小值,最小值=C′B.
∵OP的解析式为y=﹣x,
∴∠POC=45°,
∴∠P′OC′=45°.
∴∠EOC′=30°.
∴EC′= OC′=2,EO=2 .
∴C′(﹣2 ,﹣2).
设直线C′B的解析式为y=kx+b,则 ,解得k=2﹣ ,b=4 ﹣8.
∴直线C′B的戒形式为y=(2﹣ )x+4 ﹣8.
将y=﹣x代入得:﹣x=(2﹣ )x+4 ﹣8,解得x= .
∴y= .
∴点P的坐标为( , )
∵C′(﹣2 ,﹣2).
∴BE=4+2 .
依据勾股定理得:BC′= = = =2 =2 =2 +2 .
所以PB+PC+PO的最小值为2 +2 .
【解析】(1)设抛物线的解析式为y=a(x+1)(x﹣4),将a=1代入即可;(2)过点D作直线DM∥BC,交抛物线与点M和点M′.则S△MBC=S△DBC , 利用相交弦定理可求得OD的长,从而得到点D的坐标,然后可求得DM的解析式,接下来再求得y=x+1与y=x2﹣3x﹣4的交点坐标即可;(3)△OPC顺时针旋转60°得到△O′C′P′,连结C′P′、PP′、PB,过点C′作C′E⊥x轴,垂足为E.先证明△OPP′为等边三角形,由两点之间线段最短可知:当点C′P′、PP′\PB在一条直线上时,CP+PB+OP有最小值,最小值=C′B.接下来,在求得C′(﹣2 ,﹣2),然后可求得C′B的解析式为y=(2﹣ )x+4 ﹣8,然后可求得它与y=﹣x的交点坐标,然后依据勾股定理可求得BC′的值.
【考点精析】本题主要考查了三角形的外接圆与外心的相关知识点,需要掌握过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( )
A.
B.2
C.3
D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC和△DCE是两个全等的等腰三角形,BC,CE为底边.
(1)将图1中的△DCE绕C点顺时针方向旋转至∠BCE=∠ACB的位置,分别延长AB,DE交于点F(如图2),此时,四边形BCEF为何种四边形?请证明你的结论;
(2)如果将图1中的△DCE绕C点顺时针旋转至∠BCE=2∠ACB的位置,连接AD,BE(如图3),证明四边形ABED为矩形;
(3)在(2)的条件下,四边形ABED有无可能成为正方形?如果有可能成为正方形,求出∠ABC的度数为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至A处时,该岛位于正东方向的B处,为了防止某国海巡警干扰,就请求我国C处的渔监船前往B处护航,测得C与AB的距离CD为20海里,已知A位于C处的南偏西60°方向上,B位于C的南偏东45°的方向上,求A、B之间的距离.( ≈1.7,结果精确到1海里)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A在反比例函数y= (x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.
(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;
(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;
(3)如图3,当点D在边CB的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【问题探究】
(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.
【深入探究】
(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.
(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com