【题目】用适当的方法解下列方程:
(1)(x﹣5)2=16
(2)x2=5x
(3)x2﹣4x+1=0
(4)x2+3x﹣4=0
科目:初中数学 来源: 题型:
【题目】函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.
(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x-1)2+1的最大值和最小值.
(2)对于二次函数y=2(x-m)2+m-2,当2≤x≤4时有最小值为1,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,O为坐标原点.已知反比例函数y=(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为.
(1)求k和m的值;
(2)求当x≥1时函数值y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一儿童服装商店在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)已知A(-4,2),B(2,-4)是一次函数y=kx+b的图象和反比例函数 y =图象的两个交点.
(1)求反比例函数和一次函数的表达式;
(2)将一次函数y=kx+b的图象沿y轴向上平移n个单位长度,交y轴于点C,若S△ABC=12,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=Rt∠,直角边AB、BC的长(AB<BC)是方程2-7+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边 A→B→C→A的方向运动,运动时间为t(秒).
(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;
(3)点P在运动的过程中,是否存在点P,使△ABP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数的图象经过点点是直线上一个动点,如图所示,设点的横坐标为且满足过点分别作轴,轴,垂足分别为与双曲线分别交于两点,连结.
(1)求的值并结合图像求出的取值范围;
(2)在点运动过程中,求线段最短时点的坐标;
(3)将三角形沿着翻折,点的对应点得到四边形能否为菱形?若能,求出点坐标;若不能,说明理由;
(4)在点运动过程中使得求出此时的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司大门出口处有一自动感应栏杆,点A是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大门BC打开的宽度为2米,这时一辆长宽高分别为(4600 mm、1700 mm、1400 mm)的汽车能否顺利通过?(栏杆宽度,汽车反光镜忽略不计,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com