精英家教网 > 初中数学 > 题目详情

直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一个动点,当P在AC上运动时,设PC=x,△ABP 的面积为y.
(1)求AC边上的高是多少?
(2)求y与x之间的关系式。

(1)4.8;(2)y=-2.4x+24

解析试题分析:(1)根据等面积法求解即可;
(2)作PD⊥AB,可得△ADP∽△ABC,根据相似三角形的性质,可用x表示出PD的长,根据SABP=AB×PD,代入数值,即可求出y与x之间的关系式.
解:(1)设AC边上的高是x,由题意得

解得
答:AC边上的高是4.8;
(2)作PD⊥AB

∴△ADP∽△ABC,


∴y与x之间的关系式为:y=-2.4x+24.
考点:三角形的面积公式,相似三角形的判定和性质
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结并延长交的延长线于点

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在矩形ABCD中,点P是边AD上的动点,连接BP,线段BP的垂直平分线交边BC于点Q,垂足为点M,连接QP(如图).已知AD=13,AB=5,设AP=x,BQ=y.

(1)求y关于x的函数解析式,并写出x的取值范围;
(2)当以AP长为半径的⊙P和以QC长为半径的⊙Q外切时,求x的值;
(3)点E在边CD上,过点E作直线QP的垂线,垂足为F,如果EF=EC=4,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川绵阳14分)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:

(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:
(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;
(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,SAGH分别表示四边形BCHG和△AGH的面积,试探究的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3

(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;
(2)设=t,试用t表示EF的长;
(3)在(2)的条件下,当t为何值时,S22=4S1S3

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,几何体的主视图是(  )

A. B. C. D. 

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

若某几何体的三视图如图,则这个几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,下列水平放置的几何体中,俯视图是三角形的是(   )

A.B.C.D.

查看答案和解析>>

同步练习册答案