如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连结并延长交的延长线于点
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
(1)答案见试题解析;(2)10.
解析试题分析:(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;
(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.
试题解析:(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;
(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.
考点:1.相似三角形的判定;2.正方形的性质;3.平行线分线段成比例.
科目:初中数学 来源: 题型:解答题
如图,在平面直角坐标系中,点的坐标为,点在轴上,是线段的中点.将线段绕着点顺时针方向旋转,得到线段,连结、.
(1)判断的形状,并简要说明理由;
(2)当时,试问:以、、、为顶点的四边形能否为平行四边形?若能,求出相应的 的值?若不能,请说明理由;
(3)当为何值时,与相似?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
在梯形ABCD中,AB//CD,点E在线段DA上,直线CE与BA的延长线交于点G,
(1)求证:△CDE∽△GAE;
(2)当DE:EA=1:2时,过点E作EF//CD交BC于点F且 CD=4,EF=6,求AB的长
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.
(1)求证:△ABF∽△DFE
(2)若△BEF也与△ABF相似,请求出的值 .
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图所示.某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H、G分别在边AB、AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小,最小值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)请画出△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8。P是AC上的一个动点,当P在AC上运动时,设PC=x,△ABP 的面积为y.
(1)求AC边上的高是多少?
(2)求y与x之间的关系式。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com