精英家教网 > 初中数学 > 题目详情
如图,已知△ABC内接于⊙O,AB=AC,∠A=36°,CD是⊙O的直径,求∠ACD的度数.
分析:利用等腰三角形的性质以及圆周角定理得出∠D=∠A=36°,∠ABC=∠ACB=72°,进而得出∠ACD=∠ACB-∠DCB求出即可.
解答:解:∵AB=AC,∠A=36°,
∴∠D=∠A=36°,∠ABC=∠ACB=72°,
∵CD是⊙O的直径,
∴∠DBC=90°,
∴∠DCB=54°,
∴∠ACD=∠ACB-∠DCB=72°-54°=18°.
点评:此题主要考查了等腰三角形的性质以及圆周角定理,根据已知得出∠ACB与∠DCB的度数是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.
(1)求证:BC∥DE;
(2)若AB=3,BD=2,求CE的长;
(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.
求证:∠OAE=∠EAD.

查看答案和解析>>

同步练习册答案