精英家教网 > 初中数学 > 题目详情
如图,已知△ABC内接于⊙O,AE平分∠BAC,且AD⊥BC于点D,连接OA.
求证:∠OAE=∠EAD.
分析:首先连接OE,由AE平分∠BAC,易证得OE⊥BD,又由AD⊥BC,可得OE∥AD,又由OA=OE,易证得:∠OAE=∠EAD.
解答:证明:连接OE,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
BE
=
CE

∴OE⊥BC,
∵AD⊥BC,
∴OE∥AD,
∴∠OEA=∠EAD,
∵OA=OE,
∴∠OEA=∠OAE,
∴∠OAE=∠EAD.
点评:此题考查了圆周角定理、垂径定理、等腰三角形的性质以及平行线的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,AD平分∠BAC,交⊙O于点D,过D作⊙O的切线与AC的延长线交于点E.
(1)求证:BC∥DE;
(2)若AB=3,BD=2,求CE的长;
(3)在题设条件下,为使BDEC是平行四边形,△ABC应满足怎样的条件(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)如图,已知△ABC内接于⊙O,弦AD交BC于E,过点D的切线MN交直线AB于M,交直线AC于N.
(1)求证:AE•DE=BE•CE;
(2)连接DB,CD,若MN∥BC,试探究BD与CD的数量关系;
(3)在(2)的条件下,已知AB=6,AN=15,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC内接于⊙O,AB=AC,∠A=36°,CD是⊙O的直径,求∠ACD的度数.

查看答案和解析>>

同步练习册答案