精英家教网 > 初中数学 > 题目详情

如图,已知等腰△ABC,AB=AC,过A、C两点的圆⊙O切AB于A,BC的延长线交⊙O于D,∠ABD的角平分线交AC于E,交AD于F.
(1)求证:AE=AF;(2)若AC=CD=2,求AD.

(1)证明:∵BF平分∠ABD,
∴∠AEF=∠BAC+∠ABC,∠AFE=∠ADB+∠ABC,
又∵∠BAC=∠ADB,
∴AE=AF;

(2)解:∵AB是⊙O切线,AC=CD=2,
∴AB2=BC•BD
∴4=BC×(BC+2)
∴BC=-1,BC=--1(舍去),
∵AC=CD=2,
∴∠CAD=∠D,
∵AB是⊙O切线,
∴∠BAC=∠D,
∴AC是∠BAD的平分线,
=
=
∴AD=
答;AD的长为
分析:(1)根据弦切角定理可知∠BAC=∠ADB,由∠ABD的角平分线交AC于E,交AD于F,可得∠AEF=∠BAC+∠ABC,∠AFE=∠ADB+∠ABC,问题得证;
(2)根据AC=CD=2,利用切割线定理求出BC,再求证AC是∠BAD的平分线,然后可得=即可得出答案,
点评:此题主要考查学生对切割线定理、弦切角定理的理解和掌握,解答(2)的关键是利用切割线定理求出BC,然后再利用角平分线的性质即可求出AD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰△ABC的面积为8cm2,点D,E分别是AB,AC边的中点,则梯形DBCE的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰三角形ADC,AD=AC,B是线段DC上的一点,连接AB,且有AB=DB.
(1)若△ABC的周长是15厘米,且
AB
AC
=
2
3
,求AC的长;
(2)若
AB
DC
=
1
3
,求tanC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•西藏)如图,已知等腰△ABC,AC=BC=10,AB=12,以BC为直径作⊙O交AB点D,交AC于点G,DF⊥AC,垂足为F,交CB的延长线于点E.
(1)求证:直线EF是⊙O的切线;
(2)求sin∠A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=QB=BC,则∠PCQ的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,
(1)求证:AD=CD;
(2)求AE的长.

查看答案和解析>>

同步练习册答案