如图,平行四边形ABCD中,AB=3,BC=5,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F.
(1)求证:四边形CEDF是平行四边形;
(2)①当AE=时,四边
形CEDF是矩形;
②当AE=时,四边形CEDF是菱形.
![]()
(1)证明:四边形ABCD是平行四边形,
∴CF∥ED,
∴∠FCD=∠GCD,
又∠CGF=∠EGD.
G是CD的中点,
CG=DG,
在△FCG和△EDG中,
![]()
∴△CFG≌△EDG(ASA),
∴FG=EG,
∵CG=DG,
∴四边形CEDF是平行四边形;
(2)①解:当AE=3.5时,平行四边形CEDF是矩形,
理由是:过A作AM⊥BC于M,
∵∠B=60°,AB=3,
∴BM=1.5,
∵四边形ABCD是平行四边形,
∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,
∵AE=3.5,
∴DE=1.5=BM,
在△MBA和△EDC中,
![]()
∴△MBA≌△EDC(SAS),
∴∠CED=∠AMB=90°,
∵四边形CEDF是平行四边形,
∴四边形CEDF是矩形,
故答案为:3.5;
②当AE=2时,四边形CEDF是菱形,
理由是:∵AD=5,AE=2,
∴DE=3,
∵CD=3,∠CDE=60°,
∴△CDE是等边三角形,
∴CE=DE,
∵四边形CEDF是平行四边形,
∴四边形CEDF是菱形,
故答案为:2.
科目:初中数学 来源: 题型:
如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.
(1)求证:直线CD为⊙O的切线;
(2)若AB=5,BC=4,求线段CD的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:在△AOB中,AB=
,OB=6,∠B=45°,以O为原点,所在直线为x轴建立直角坐标系
(1)写出点A的坐标:;
(2)C为线段OB上的动点,D为线段AB上的动点,且始终有CD∥OA,若C由O向B运动的距离OC=x,△ACD的面积为y
①求y与x之间的函数关系式;
②是否存在这样的点D,使△AOC的面积等于△ACD的面积的2倍?若存在,请求出点D的坐标,否则请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
下列说法不正确的是()
A. 一组邻边相等的矩形是正方形
B. 对角线相等的菱形是正方形
C. 对角线互相垂直的矩形是正方形
D. 对角线互相垂直且相等的四边形是正方形
查看答案和解析>>
科目:初中数学 来源: 题型:
某校男子足球队的年龄分布如下面的条形图所示.
![]()
(1)求这些队员的平均年龄;
(2)下周的一场校际足球友谊赛中,该校男子足球队将会有11名队员作为首发队员出场,不考虑其他因素,请你求出其中某位队员首发出场的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com