精英家教网 > 初中数学 > 题目详情
(2011•葫芦岛)如图,在4×5网格图中,其中每个小正方形边长均为1,梯形ABCD和五边形EFGHK的顶点均为小正方形的顶点.
(1)以B为位似中心,在网格图中作四边形A′BC′D′,使四边形A′BC′D′和梯形ABCD位似,且位似比为2:1;
(2)求(1)中四边形A′BC′D′与五边形EFGHK重叠部分的周长.(结果保留根号)
分析:(1)分别延长BA、BC、BD到A′、C′、D′,使BA′=2BA,BC′=2BC,BD′=2BD,然后顺次连接A′BC′D′即可得解;
(2)根据网格图形,重叠部分正好是以格点为顶点的平行四边形,求出两邻边的长的,然后根据平行四边形的周长公式计算即可.
解答:解:(1)如图所示:四边形A′BC′D′就是所要求作的梯形;


(2)四边形A′BC′D′与五边形EFGHK重叠部分是平行四边形EFGD′,ED′=FG=1,
在Rt△EDF中,ED=DF=1,
由勾股定理得EF=
12+12
=
2

∴D′G=EF=
2

∴四边形A′BC′D′与五边形EFGHK重叠部分的周长=ED′+FG+D′G+EF,
=1+1+
2
+
2

=2+2
2

故答案为:2+2
2
点评:本题考查了利用位似变换作图,关键是根据位似变换的定义找出点A、C、D的对应点的位置.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•葫芦岛)如图(1)至图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,点B、C、E在同一条直线上.
(1)已知:如图(1),AC=AB,AD=AE.求证:①CD=BE;②CD⊥BE.
(2)如图(2),当AB=kAC,AE=kAD(k≠1)时,分别说出(1)中的两个
结论是否成立,若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛)如图,有一直径MN=4的半圆形纸片,其圆心为点P,从初始位置Ⅰ开始,在无滑动的情况下沿数轴向右翻滚至位置Ⅴ,其中,位置Ⅰ中的MN平行于数轴,且半⊙P与数轴相切于原点O;位置Ⅱ和位置Ⅳ中的MN垂直于数轴;位置Ⅲ中的MN在数轴上;位置Ⅴ中的点N到数轴的距离为3,且半⊙P与数轴相切于点A.
解答下列问题:
(1)位置Ⅰ中的MN与数轴之间的距离为
2
2
;位置Ⅱ中的半⊙P与数轴的位置关系是
相切
相切

(2)求位置Ⅲ中的圆心P在数轴上表示的数;
(3)纸片半⊙P从位置Ⅲ翻滚到位置Ⅳ时,求点N所经过路径长及该纸片所扫过图形的面积;
(4)求OA的长.
[(2),(3),(4)中的结果保留π].

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛一模)(1)已知x=-2,求(1-
1
x
x2-2x+1
x
的值.
(2)解方程:
1-x
x-2
+2=
1
x-2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛一模)如图,在矩形ABCD中,AD=8,AB=6,点M是BC的中点,点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动,在点P,Q的运动过程中,以PQ为边作正方形PQEF,使它与矩形ABCD在BC的同侧,点P,Q同时出发,当点P返回点M时停止运动,点Q也随之停止,设点P,Q运动的时间是t秒(t>0)
(1)用含t的代数式表示线段BQ的长;
(2)设正方形PQEF与矩形ABCD重叠部分的面积为S,求S与t之间的函数关系式;
(3)连接AC,当正方形PQEF与△ADC重叠部分为三角形时,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•葫芦岛)根据图所示的程序计算,若输入x的值为64,则输出结果为
-
5
2
-
5
2

查看答案和解析>>

同步练习册答案