分析 首先利用菱形的性质得到∠A=∠C,∠B=∠D,AB=BC=CD=DA,然后根据AE=AH=CF=CG,得到BE=BF=DH=DG,从而证得△AEH≌△CGF,△BEF≌△DGH,证得四边形EFGH是平行四边形,然后利用有一个角是直角的平行四边形是矩形判定四边形EFGH是矩形.
解答 证明:∵四边形ABCD是菱形,
∴∠A=∠C,∠B=∠D,AB=BC=CD=DA
∵AE=AH=CF=CG,
∴BE=BF=DH=DG,
∴△AEH≌△CGF,△BEF≌△DGH,
∴EH=FG,EF=GH,
∴四边形EFGH是平行四边形,
∵∠A+∠D=180°,
∴∠AHE+∠DHG=90°,
∴∠EHG=90°,
∴四边形EFGH是矩形.
点评 本题考查了矩形的判定,本题应用了有一个角是直角的平行四边形是矩形判定四边形EFGH是矩形,难度一般.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x-y=24}\\{2x+4y=74}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x-y=24}\\{4x+2y=74}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=24}\\{2x+4y=74}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=24}\\{4x+2y=74}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 成绩(分) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 人数(人) | 0 | 0 | 0 | 1 | 0 | 1 | 3 | 5 | 6 | 19 | 15 |
| A. | 5分 | B. | 6分 | C. | 9分 | D. | 10分 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com