【题目】如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).
(1)当t=3s时,连接AC与EF交于点G,如图①所示,则EF= cm;
(2)当E、F分别在线段AD和AB上时,如图②所示,
①求证:△CEF是等边三角形;
②连接BD交CE于点G,若BG=BC,求EF的长和此时的t值.
(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若EF=3cm,直接写出此时t的值.
【答案】(1)3;(2)①见解析;②EF=(9)cm,t=6﹣6(3)
【解析】
(1)由条件可知△ADC,△ABC都是等边三角形,证明CE=CF,AE=AF,可得出AC垂直平分线段EF,由30°直角三角形的性质即可解决问题;
(2)①只要证明△DCE≌△ACF,得出CE=CF,∠DCE=∠ACF,可得出∠ECF=60°,则结论得证;
②连接AC,交BD 于点O,过点E作EN⊥CD,垂足为N,由BD=2BO求出BD长,证明DE=DG,可求出DE长,则t的值可求出,在Rt△DEN中,由EN=DEsin60°,可求出EN=9﹣3,在Rt△ECN中可得∠ECN=45°,求出CE的长,则CE=EF可求出;
(3)作CH⊥AB于H.先求出BH=3,CH=3,在Rt△CFH中,由勾股定理HF=可求出,则BF和AF可求出.
(1)解:如图①中,
∵四边形ABCD是菱形,∠ADC=60°,
∴DA=DC=AB=BC,
∴△ADC,△ABC都是等边三角形,
当t=3时,AE=DE=3cm,AF=BF=3cm,
∵CA=CD=CB,
∴CE⊥AD,CF⊥AB,
∵∠CAB=∠CAD,
∴CF=CE,
∵AE=AF,
∴AC垂直平分线段EF,
∴∠AGF=90°,
∵∠FAG=60°,
∴∠AFG=30°,
∴AG=AF=cm,
∴cm,
∴EF=cm;
故答案为:.
(2)①证明:由(1)知△ADC,△ABC都是等边三角形,
∴∠D=∠ACD=∠CAF=0°,DC=AC,
∵DE=AF,
∴△DCE≌△ACF(SAS),
∴CE=CF,∠DCE=∠ACF,
∴∠ECF=∠ACD=60°,
∴△ECF是等边三角形.
②如图②中,连接AC,交BD 于点O,过点E作EN⊥CD,垂足为N,
∵,BC=6cm,
∴BO=BCsin60°=6×cm,
∴cm,
∴cm,
∵BG=BC,
∴∠BGC=∠BCG=75°,
∵∠BGC=∠DGE,
∴∠BCG=∠DGE,
∵AD∥BC,
∴∠DEG=∠BCG,
∴∠DEG=∠DGE,
∴DG=DE=cm,
∵∠BCD=120°,
∴∠DCE=∠BCD﹣∠BCG=120°﹣75°=45°,
∴EN=DEsin60°=cm,
∴cm,
∴EF=CE=(9)cm,t=(6﹣6)s.
(3)解:如图③,作CH⊥AB于H,
由(2)可知:△EFC是等边三角形,
∴CF=EF=3cm,
在Rt△BCH中,∵BC=6,∠CBH=60°,
∴BH=3,CH=cm,
在Rt△CFH中,HF=cm,
∴cm,AF=(3+)cm,
∵运动速度为1cm/s,
∴s.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中的阴影部分是某水库大坝横截面,小明站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,已知斜坡AB的坡度i=:1,若大树CD的高为8米,则大坝的高为( )米(结果精确到1米,参考数据≈1.414 ≈1.732)
A. 18 B. 19 C. 20 D. 21
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=ax+b(a≠0)与y轴交与点C,与双曲线y=(m≠0)交于A、B两点,AD⊥y轴于点D,连接BD,已知OC=AD=2,cos∠ACD=.
(1)求直线AB和双曲线的解析式.
(2)求△ABD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 “赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)①表中a的值为 ,中位数在第 组;
②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com