精英家教网 > 初中数学 > 题目详情

作业宝如图,在Rt△ABC中,∠C=90°,AC=BC=4,D是斜边AB的中点.把三角尺的直角顶点与D重合,当三角尺转动时,两直角边与AC、BC交于F、E,四边形CEDF的面积会不会随三角尺的转动而发生变化?若不变,求出它的面积;若变化,请说明理由.

解:四边形CEDF的面积不会随三角尺的转动而发生变化,
理由如下:在Rt△ABC中,D是AB的中点,且AC=BC,
∴CD=AB=BD,
∠DCA=∠B=45°,CD⊥AB,
∵∠BDE+∠CDE=90°,∠FDC+∠CDE=90°,
∴∠BDE=∠FDC.
在△BDE和△CDF中

∴△BDE≌△CDF(ASA).
∴S四边形FDEC=S△FDC+S△CDE=S△BDE+S△CDE=S△BCD=S△ACB=4
∴四边形CEDF的面积为4是一个定值.
分析:四边形CEDF的面积不会随三角尺的转动而发生变化,首先证明MD和ME所在的△BDE≌△CDF,再利用全等得到面积相等,把所求的四边形的面积进行转换,成为三角形的面积即可.
点评:本题考查了三角形全等的判定和性质;两个角在不同的三角形中要证明相等时,通常是利用全等来进行证明,应注意需注意已证得条件在以后证明中的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案