分析 (1)利用正方形网格,作弦AB和BC的垂直平分线,它们相交于点M,则M点为该圆弧所在圆的圆心的位置;
(2)先计算出AM2=20,MC2=20,AC2=40,再利用勾股定理的逆定理可得∠AMC=90°,然后根据扇形的面积公式求解;
(3)设圆锥底面圆的半径为r,根据圆锥的侧面展开图为扇形,扇形的弧长等于底面圆的周长和弧长公式得到$\frac{1}{2}$•2π•r•$\sqrt{20}$=5π,解得r=$\frac{\sqrt{5}}{2}$,然后利用扇形的半径等于母线长和勾股定理计算圆锥的高.
解答 解:(1)作AB和BC的垂直平分线,它们相交于点M,如图,![]()
点M为所求;
(2)连结AC,
∵A点的坐标为(0,4),C点的坐标为(6,2),M(0,2),
∴AM2=22+42=20,MC2=22+(6-2)2=20,AC2=62+(2-4)2=40,
∴AM2+MC2=AC2,
∴△AMC为直角三角形,∠AMC=90°,
∴扇形AMC的面积=$\frac{90•π•20}{360}$=5π;
(3)设圆锥底面圆的半径为r,
根据题意得$\frac{1}{2}$•2π•r•$\sqrt{20}$=5π,解得r=$\frac{\sqrt{5}}{2}$,
所以圆锥的高=$\sqrt{20-(\frac{\sqrt{5}}{2})^{2}}$=$\frac{5\sqrt{3}}{2}$.
点评 本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了垂径定理、扇形面积的计算和圆锥的计算.
科目:初中数学 来源: 题型:选择题
| A. | x≥-3且x≠1 | B. | x>-3且x≠1 | C. | x≥3 | D. | x>3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3 个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1:2 | B. | 1:4 | C. | 1:5 | D. | 1:6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com