精英家教网 > 初中数学 > 题目详情

【题目】已知数列{an}的前n项和为Sn , 且n+1=1+Sn对一切正整数n恒成立.
(1)试求当a1为何值时,数列{an}是等比数列,并求出它的通项公式;
(2)在(1)的条件下,当n为何值时,数列 的前n项和Tn取得最大值.

【答案】
(1)解:由an+1=1+Sn得:当n≥2时,an=1+Sn﹣1

两式相减得:an+1=2an

∵数列{an}是等比数列,∴a2=2a1

又∵a2=1+S1=1+a1,解得:a1=1.

得:


(2)解: ,可知数列 是一个递减数列,

由此可知当n=9时,数列 的前项和Tn取最大值.


【解析】(1)由已知数列递推式可得an+1=2an , 再由数列{an}是等比数列求得首项,并求出数列通项公式;(2)把数列{an}的通项公式代入数列 ,可得数列 是递减数列,可知当n=9时,数列 的项为正数,n=10时,数列 的项为负数,则答案可求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】边长为2 的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F.

(1)连接CQ,证明:CQ=AP;
(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE= BC;
(3)猜想PF与EQ的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>0,b>0)的离心率为 ,右焦点为F,上顶点为A,且△AOF的面积为 (O为坐标原点).

(1)求椭圆C的方程;
(2)设P是椭圆C上的一点,过P的直线与以椭圆的短轴为直径的圆切于第一象限内的一点M,证明:|PF|+|PM|为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx有两个极值点x1、x2 , 且x1<x2 , 若x1+2x0=3x2 , 函数g(x)=f(x)﹣f(x0),则g(x)(
A.恰有一个零点
B.恰有两个零点
C.恰有三个零点
D.至多两个零点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=|x+2a|+|x﹣1|.
(1)若a=1,解不等式f(x)≤5;
(2)当a≠0时, ,求满足g(a)≤4的a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将圆 为参数)上的每一点的横坐标保持不变,纵坐标变为原来的 倍,得到曲线C.
(1)求出C的普通方程;
(2)设直线l:x+2y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系, 求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两动圆F1:(x+ 2+y2=r2和F2:(x﹣ 2+y2=(4﹣r)2(0<r<4),把它们的公共点的轨迹记为曲线C,若曲线C与y轴的正半轴的交点为M,且曲线C上的相异两点A、B满足: =0.
(1)求曲线C的方程;
(2)证明直线AB恒经过一定点,并求此定点的坐标;
(3)求△ABM面积S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(Ⅰ)如果关于x的不等式|x+3|+|x﹣2|<a的解集不是空集,求参数a的取值范围; (Ⅱ)已知正实数a,b,且h=min{a, },求证:0<h≤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的. 如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1 的长轴长是4,椭圆C2 短轴长是1,点F1 , F2分别是椭圆C1的左焦点与右焦点,
(Ⅰ)求椭圆C1 , C2的方程;
(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.

查看答案和解析>>

同步练习册答案