精英家教网 > 初中数学 > 题目详情
中,动点P从点C出发,以每秒1cm的速度沿CA、AB运动到点B,问点P从C点出发多少秒时,可使

答案:
解析:

点P从点C出发2s或时,可使


提示:

利用周长与面积相关知识


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在边长为12个单位的正方形ABCD中,动点P从点B出发,以每秒3个单位的速度沿正方形的边按B→C→D→A运动;动点Q同时从点C出发,以每秒2个单位的速度沿正方形的边按C→D→A运动,到达点A后停止运动,设运动时间为t(秒);精英家教网
(1)直接写出:当t的取值在什么范围时,点P、点Q在正方形的同一条边上运动?
(2)若点P在BC边上运动,且AP=AQ,试求t的值;
(3)在整个运动过程中(不包括起点),要使△APQ是直角三角形,试求出所有符合条件的t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,边长为7的正方形OABC放置在平面直角坐标系中,动点P从点C出发,以每秒1个单位的速度向O运动,点Q从点O同时出发,以每秒1个单位的速度向点A运动,到达端点即停止运动,运动时间为t秒,连PQ,BP,BQ
(1)写出B点坐标;
(2)填写下表:
时间t(单位:秒) 1 2 3 4 5 6
OP的长度            
OQ的长度            
PQ的长度            
四边形OPBQ的面积            
(1)根据你所填的数据,请你描述线段PQ的长度的变化规律并猜测PQ长度的最小值;
(2)根据你所填的数据,请问四边形OPBQ的面积是否发生变化并证明你的论断;
(3)设点M、N分别是BP、BQ的中点,写出点M,N的坐标,是否存在经过M、M两点的反比例函数?如果存在,求出t的值;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,点B坐标为(6,0),点A坐标为(6,12),动点P从点O开始沿OB以每秒1个单位长度的速度向点B移动,动点Q从点B开始沿BA以每秒2个单位长度的速度向点A移动.如果P、Q分别从O、B同时出发,用t(秒)表示移动的时间精英家教网(0<t≤6),那么,
(1)当t为何值时,四边形OPQA是梯形,此时梯形OPQA的面积是多少?
(2)当t为何值时,以点P、B、Q为顶点的三角形与△AOB相似?
(3)若设四边形OPQA的面积为y,试写出y与t的函数关系式,并求出t取何值时,四边形OPQA的面积最小?
(4)在y轴上是否存在点E,使点P、Q在移动过程中,以B、Q、E、P为顶点的四边形的面积是一个常数?若存在请求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•保定一模)如图,点E是边长为1的正方形ABCD的对角线BD上的一个动点(不与B、D两点重合),过点E作直线MN∥DC,交AD于M,交BC于N,连接AE,作EF⊥AE于E,交直线CB于F.
(1)如图1,当点F在线段CB上时,通过观察或测量,猜想△AEF的形状,并证明你的猜想;
(2)如图2,当点F在线段CB的延长线上时,其它条件不变,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由;
(3)在点E从点D向点B的运动过程中,四边形AFNM的面积是否会发生变化?若发生了变化,请说明理由;若没有发生变化,请求出其面积的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•来宾)在△AOB中,∠AOB=90°,AO=6厘米,BO=8厘米,分别以OB和OA所在直线为x轴,y轴建立平面直角坐标系,如图所示,动点M从点A开始沿AO方向以2厘米/秒的速度向点O移动,同时动点N从点O开始沿OB方向以4厘米/秒的速度向点B移动(其中一点到达终点时,另一点随即停止移动).
(1)求过点A和点B的直线表达式;
(2)当点M移动多长时间时,四边形AMNB的面积最小?并求出四边形AMNB面积的最小值;
(3)在点M和点N移动的过程中,是否存在以O,M,N为顶点的三角形与△AOB相似?若存在,请求出点M 和点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案