精英家教网 > 初中数学 > 题目详情

(2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.

(1)求这条抛物线的解析式;
(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式.

解:(1)根据题意得,A(1,0),D(0,1),B(﹣3,0),C(0,﹣3),
∵抛物线经过点A(1,0),B(﹣3,0),C(0,﹣3),
,解得
∴抛物线的解析式为:y=x2+2x﹣3。
(2)存在。△APE为等腰直角三角形,有三种可能的情形:
①以点A为直角顶点,
如图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F。

∵OA=OD=1,∴△AOD为等腰直角三角形。
∵PA⊥AD,∴△OAF为等腰直角三角形。
∴OF=1,F(0,﹣1)。
设直线PA的解析式为y=kx+b,
将点A(1,0),F(0,﹣1)的坐标代入得:
,解得
∴直线PA的解析式为y=x﹣1。
将y=x﹣1代入抛物线解析式y=x2+2x﹣3得
x2+2x﹣3=x﹣1,整理得:x2+x﹣2=0,
解得x=﹣2或x=1。
当x=﹣2时,y=x﹣1=﹣3。∴P(﹣2,﹣3)。
②以点P为直角顶点,
此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上。
过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;
因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合,
∴P(﹣3,0)。
③以点E为直角顶点,
此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上。
综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形。
点P的坐标为(﹣2,﹣3)或(﹣3,0)。
(3)y==x2+4x+1。

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知抛物线抛物线(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(              );
依此类推第n条抛物线yn的顶点坐标为(              );
所有抛物线的顶点坐标满足的函数关系是       
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数(m>0)的图象与x轴交于A、B两点.

(1)写出A、B两点的坐标(坐标用m表示);
(2)若二次函数图象的顶点P在以AB为直径的圆上,求二次函数的解析式;
(3)设以AB为直径的⊙M与y轴交于C、D两点,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线的图象过C点.

(1)求抛物线的解析式;
(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川自贡14分)如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=

(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;
(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知点A(0,4),B(2,0).

(1)求直线AB的函数解析式;
(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.
①求线段AC的长;(用含m的式子表示)
②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,将抛物线C1:y=x2+3先向右平移1个单位,再向下平移7个单位得到抛物线C2。C2的图象与x轴交于A、B两点(点A在点B的左侧)。

(1)求抛物线C2的解析式;
(2)若抛物线C2的对称轴与x轴交于点C,与抛物线C2交于点D,与抛物线C1交于点E,连结AD、DB、BE、EA,请证明四边形ADBE是菱形,并计算它的面积;
(3)若点F为对称轴DE上任意一点,在抛物线C2上是否存在这样的点G,使以O、B、F、G四点为顶点的四边形是平行四边形,如果存在,请求出点G的坐标,如果不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

由示意图可见,抛物线y=x2 +px+q   ①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

查看答案和解析>>

同步练习册答案