精英家教网 > 初中数学 > 题目详情

如图,在△ABC和△AˊBˊCˊ中,AB=AˊBˊ,∠B=∠Bˊ,补充条件后仍不一定能保证△ABC≌△AˊBˊCˊ,则补充的这个条件是


  1. A.
    BC=BˊCˊ
  2. B.
    ∠A=∠Aˊ
  3. C.
    AC=AˊCˊ
  4. D.
    ∠C=∠Cˊ
C
分析:全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.
解答:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;
B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;
C、若添加AC=A'C',不能进行全等的判定,故本选项正确;
D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;
故选C.
点评:本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,如图,在△ABC和△EDB中,∠ACB=∠EBD=90°,点E在BC上,DE⊥AB交AB于F,且AB=ED.求证:DB=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=mAC(m>1).试探索线段EF与AB的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”证明△ABC≌△ABD,则需要加条件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB边上的中点.则DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,请说明AE=BD的理由.

查看答案和解析>>

同步练习册答案