精英家教网 > 初中数学 > 题目详情

【题目】如图,已知Rt△ABC中,∠C=90°,∠A=30°,AB=4.
(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用尺规作图法,保留作图痕迹,不要求写作法和证明):
(2)连接CE,求△BEC的周长.

【答案】
(1)解:如图,DE为所作;


(2)解:∵,∠C=90°,∠A=30°,AB=4.

∴BC= AB=2,

∵DE垂直平分AC,

∴EC=EA,

∴△BEC的周长=BE+EC+BC

=BE+EA+BC

=AB+BC

=4+2

=6.


【解析】(1)利用基本作图作AC的垂直平分线得到DE;(2)先利用含30度的直角三角形三边的关系得到BC=2,再根据线段垂直平分线的性质得到EC=EA,然后利用等线段代换得到△BEC的周长=AB+BC=6.
【考点精析】根据题目的已知条件,利用线段垂直平分线的性质和含30度角的直角三角形的相关知识可以得到问题的答案,需要掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若实数m、n满足等式,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.

(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式;
(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ= AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1先化简,再求值 xx1+2xx+1)﹣(3x1)(2x5),其中 x=2

2)解方程(3x2)(2x3=6x+5)(x1+15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点B、F、C、E在同一条直线上,点A、D在直线BC的异侧,AB=DE,AC=DF,BF=EC.

(1)求证:△ABC≌△DEF;

(2)若∠BFD=150°,求∠ACB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.

(1)四边形ABCD一定是四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时k1 , k2之间的关系式;若不能,说明理由;
(3)设P(x1 , y1),Q(x2 , y2)(x2>x1>0)是函数y= 图象上的任意两点,a= ,b= ,试判断a,b的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,D是等边三角形ABC外一点,DB=DC,∠BDC=120°,点E,F分别在AB,AC上.

(1)求证:AD是BC的垂直平分线.

(2)若ED平分∠BEF,求证:FD平分∠EFC.

(3)在(2)的条件下,求∠EDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④ <0中,正确的结论有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案