精英家教网 > 初中数学 > 题目详情

【题目】如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.

(1)四边形ABCD一定是四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时k1 , k2之间的关系式;若不能,说明理由;
(3)设P(x1 , y1),Q(x2 , y2)(x2>x1>0)是函数y= 图象上的任意两点,a= ,b= ,试判断a,b的大小关系,并说明理由.

【答案】
(1)平行
(2)

解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,

∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)

将x= 带入y=k1x得y=

故A点的坐标为( )同理则B点坐标为( ),

又∵OA=OB,

= ,两边平方得: +k1= +k2

整理后得(k1﹣k2)(k1k2﹣1)=0,

∵k1≠k2

所以k1k2﹣1=0,即k1k2=1;


(3)

解:∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,

∴y1= ,y2=

∴a= = =

∴a﹣b= = =

∵x2>x1>0,

>0,x1x2>0,(x1+x2)>0,

>0,

∴a﹣b>0,

∴a>b.


【解析】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,
∴OA=OC,OB=OD,
∴四边形ABCD 是平行四边形;
所以答案是:平行;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+e与x轴交于点A(﹣3,0)、点B(9,0),与y轴交于点C,顶点为D,连接AD、DB,点P为线段AD上一动点.

(1)求抛物线的解析式;
(2)如图1,过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;

(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,直接写出△PMN为等腰三角形时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有点a,b,c三点

(1)用“<”将a,b,c连接起来.

(2)b﹣a   1(填“<”“>”,“=”)

(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|

(4)用含a,b的式子表示下列的最小值:

①|x﹣a|+|x﹣b|的最小值为   

②|x﹣a|+|x﹣b|+|x+1|的最小值为   

③|x﹣a|+|x﹣b|+|x﹣c|的最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知Rt△ABC中,∠C=90°,∠A=30°,AB=4.
(1)作AC边上的垂直平分线DE,交AC于点D,交AB于点E(用尺规作图法,保留作图痕迹,不要求写作法和证明):
(2)连接CE,求△BEC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,C是劣弧 的中点,连BO并延长交⊙O于点D,连接CA,CB,AB与CD交于点F,已知CF=1,FD=2.
(1)求CB的长;
(2)延长DB到E,使BE=OB,连接CE,求证:CE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点N是反比例函数y= (x>0)图象上的一个动点,过点N作MN∥x轴,交直线y=﹣2x+4于点M,则△OMN面积的最小值是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从坡上建筑物AB观测坡底建筑物CD.从A点测得C点的俯角为45°,从B点测得D点的俯角为30°.已知AB的高度为10m,AB与CD的水平距离是OD=15m,则CD的高度为m(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点边上,,为了判断的大小关系,请你填空完成下面的推理过程,并在空白括号内,注明推理的根据.

解:作,垂足为

________三角形,

________

又∵

________,即________

又∵________(自己所作),

是线段________的垂直平分线;

________

________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点EABC外部,点DBC边上,DEAC于点F,若∠C=E,∠BAD=CAEAC=AE

(1)求证:ABC≌△ADE

(2)若∠B=60°,求证:ABD是等边三角形.

查看答案和解析>>

同步练习册答案