分析 (1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;
(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=$\frac{1}{2}$AO,即可解题.
解答 解:(1)如图1,作CD⊥BO于D,![]()
∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
在△ABO和△BCD中,
$\left\{\begin{array}{l}{∠BOA=∠BDC=90°}\\{∠CBD=∠BAO}\\{AB=BC}\end{array}\right.$,
∴△ABO≌△BCD(AAS),
∴CD=BO=2,
∴B点坐标(0,2);
故答案为:(0,2);
(2)PB的长度不发生改变,
理由:如图3,作EG⊥y轴于G,
∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,
∴∠BAO=∠EBG,
在△BAO和△EBG中,$\left\{\begin{array}{l}{∠AOB=∠BGE=90°}\\{∠BAO=∠EBG}\\{AB=BE}\end{array}\right.$
∴△BAO≌△EBG(AAS),
∴BG=AO,EG=OB,
∵OB=BF,
∴BF=EG,
在△EGP和△FBP中,$\left\{\begin{array}{l}{∠EPG=∠FPB}\\{∠EGP=∠FBP=90°}\\{EG=BF}\end{array}\right.$,
∴△EGP≌△FBP(AAS),
∴PB=PG,
∴PB=$\frac{1}{2}$BG=$\frac{1}{2}$AO=3
即:PB的长度不发生改变,是定值为3.
点评 此题是三角形综合题,主要考查了勾股定理、角平分线的性质、全等三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com