精英家教网 > 初中数学 > 题目详情
10.(1)如图①,等腰直角△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上,若点C的横坐标为2,直接写出点B的坐标(0,2);(提示:过C作CD⊥y轴于点D,利用全等三角形求出OB即可)
(2)如图②,若点A的坐标为(-6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰直角△OBF,等腰直角△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.

分析 (1)作CD⊥BO,易证△ABO≌△BCD,根据全等三角形对应边相等的性质即可解题;
(2)作EG⊥y轴,易证△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=$\frac{1}{2}$AO,即可解题.

解答 解:(1)如图1,作CD⊥BO于D,
∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
在△ABO和△BCD中,
$\left\{\begin{array}{l}{∠BOA=∠BDC=90°}\\{∠CBD=∠BAO}\\{AB=BC}\end{array}\right.$,
∴△ABO≌△BCD(AAS),
∴CD=BO=2,
∴B点坐标(0,2);
故答案为:(0,2);

(2)PB的长度不发生改变,
理由:如图3,作EG⊥y轴于G,
∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,
∴∠BAO=∠EBG,
在△BAO和△EBG中,$\left\{\begin{array}{l}{∠AOB=∠BGE=90°}\\{∠BAO=∠EBG}\\{AB=BE}\end{array}\right.$
∴△BAO≌△EBG(AAS),
∴BG=AO,EG=OB,
∵OB=BF,
∴BF=EG,
在△EGP和△FBP中,$\left\{\begin{array}{l}{∠EPG=∠FPB}\\{∠EGP=∠FBP=90°}\\{EG=BF}\end{array}\right.$,
∴△EGP≌△FBP(AAS),
∴PB=PG,
∴PB=$\frac{1}{2}$BG=$\frac{1}{2}$AO=3
即:PB的长度不发生改变,是定值为3.

点评 此题是三角形综合题,主要考查了勾股定理、角平分线的性质、全等三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知矩形OABC在如图所示平面直角坐标系中,点B的坐标为(4,3),连接AC.动点P从点B出发,以2cm/s的速度,沿直线BC方向运动,运动到C为止(不包含B、C两点),过点P作PQ∥AC交线段BA于点Q,以PQ为边向下作正方形PQMN,设正方形PQMN与△ABC重叠部分图形面积为S(cm2),设点P的运动时间为t(s).
(1)请用含t的代数式表示N点的坐标;
(2)求S与t之间的函数关系式,并指出t的取值范围;
(3)如图②,点G在边OC上,且OG=1cm,在点P从点B出发的同时,另有一动点E从点O出发,以2cm/s的速度,沿x轴正方向运动,以OG、OE为一组邻边作矩形OEFG.请直接写出当点F落在正方形PQMN的内部(不含边界)时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,将宽为m,长是宽的2倍的长方形沿虚线剪开,得到四个直角三角形,这四个直角三角形可以拼成一个如图2的大正方形.
(1)图1中的长方形的面积和图2中的正方形的面积的关系是:相等;
(2)当m=2和m=3时,分别求图2中大正方形的边长;
(3)通过(2)问猜想图2中的大正方形的边长n与图1中长方形的宽m有何关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在正方形网格中,点O、A、B、C、D均是格点.若OE平分∠BOC,则∠DOE的度数为22.5°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.比较大小:-$\frac{4}{5}$<-$\frac{2}{3}$(填“<”或“>”)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知∠1与∠2互余,∠2与∠3互补,∠1=67°12′,则∠3=157°12′.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,点P是∠AOB的角平分线上的一点,过点P作PC∥OA交OB于点C,PD⊥OA,若∠AOB=60°,OC=6,则PD=3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.关于x的一元二次方程ax+3=4x+1的解为正整数,则整数a的值为2或3.

查看答案和解析>>

同步练习册答案