精英家教网 > 初中数学 > 题目详情

锐角△ABC的三边两两不等,D是BC边上的一点,∠BAD+∠C=90°,则AD一定过△ABC的


  1. A.
    垂心
  2. B.
    内心
  3. C.
    外心
  4. D.
    重心
C
分析:作∠ABE=90°,BE交AD的延长线于E,根据三角形的内角和定理求出∠BAD+∠E=90°,推出∠C=∠E,根据三角形的外接圆的圆心的定义求出即可.
解答:解:作∠ABE=90°,BE交AD的延长线于E,
∴∠BAD+∠E=90°,
∵∠C+∠BAD=90°,
∴∠C=∠E,
∴E在△ABC的外接圆上,
∵∠ABE=90°,
∴AE是直径,
∴AD一定过△ABC的外心.
故选C.
点评:本题主要考查对三角形的外接圆与外心,三角形的内角和定理等知识点的理解和掌握,能求出∠E=∠C是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、锐角△ABC的三边两两不等,D是BC边上的一点,∠BAD+∠C=90°,则AD一定过△ABC的(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a,b,c是△ABC的三边的长,且关于x的方程x2+2(a-b)x-(a2+b2-c22=0有两个相等的实数根,那么△ABC是(  )

查看答案和解析>>

科目:初中数学 来源:2012年理科实验班自主招生考试数学试卷(二)(解析版) 题型:选择题

锐角△ABC的三边两两不等,D是BC边上的一点,∠BAD+∠C=90°,则AD一定过△ABC的( )
A.垂心
B.内心
C.外心
D.重心

查看答案和解析>>

科目:初中数学 来源:2008年四川省成都市七中外地生招生考试数学试卷(解析版) 题型:选择题

锐角△ABC的三边两两不等,D是BC边上的一点,∠BAD+∠C=90°,则AD一定过△ABC的( )
A.垂心
B.内心
C.外心
D.重心

查看答案和解析>>

同步练习册答案