【题目】如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.
(1)求证:△PCD是等腰三角形;
(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.
【答案】(1)证明见解析;(2)12.
【解析】
试题分析:(1)连接OC,由切线性质和垂直性质得∠1+∠3=90°、∠2+∠4=90°,继而可得∠3=∠5得证;
(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=,可知QH=3、BH=4,设圆的半径为r,在RT在△OCH中根据勾股定理可得r的值,在RT△ABF中根据三角函数可得答案.
试题解析:(1)连接OC,∵EC切⊙O于点C,∴OC⊥DE,∴∠1+∠3=90°,又∵OP⊥OA,∴∠2+∠4=90°,∵OA=OC,∴∠1=∠2,∴∠3=∠4,又∵∠4=∠5,∴∠3=∠5,∴DP=DC,即△PCD为等腰三角形;
(2)如图2,连接OC、BC.∵DE与⊙O相切于点E,∴∠OCB+∠BCE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠BCE=90°,又∵CG⊥AB,∴∠OBC+∠BCG=90°,∴∠BCE=∠BCG,∵BF∥DE,∴∠BCE=∠QBC,∴∠BCG=∠QBC,∴QC=QB=5,∵BF∥DE,∴∠ABF=∠E,∵sinE=,∴sin∠ABF=,∴QH=3、BH=4,设⊙O的半径为r,∴在△OCH中,,解得:r=10,又∵∠AFB=90°,sin∠ABF=,∴AF=12.
科目:初中数学 来源: 题型:
【题目】下列命题中,真命题的个数是( )
①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形.③任意一个三角形一定有一个外接圆,并且只有一个外接圆.④三角形的内心到三角形的三个顶点距离相等.
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算下列各题:
(1)﹣13﹣(﹣22)+(﹣28)
(2)(-+)×(-48)
(3)23+(-4)-(-16)-5
(4)-14-× [3﹣(-3)2]
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列有关圆的一些结论,其中正确的是( )
A.任意三点可以确定一个圆B.相等的圆心角所对的弧相等
C.平分弦的直径垂直于弦,并且平分弦所对的弧D.圆内接四边形对角互补
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆,其中“6000万”用科学记数法表示为( )
A.0.6×108
B.6×108
C.6×107
D.60×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC三个顶点的位置如图(每个小正方形的边长均为1).
(1)请画出△ABC沿x轴向右平移4个单位长度后的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法)
(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′().
(3)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com