| A. | 4π-3$\sqrt{3}$ | B. | 2π-3$\sqrt{3}$ | C. | 4π-6$\sqrt{3}$ | D. | π-$\frac{3}{2}$$\sqrt{3}$ |
分析 连接OB,OA,得出△AOB是等边三角形,求出S△AOB=$\frac{\sqrt{3}}{4}$×12=$\frac{\sqrt{3}}{4}$,S扇形AOB=$\frac{60π×{1}^{2}}{360}$=$\frac{π}{6}$,那么阴影面积=(S扇形AOB-S△AOB)×6,代入计算即可.
解答
解:如图,连接OB,OA,则∠AOB=$\frac{360°}{6}$=60°,
∵OA=OB,
∴△AOB是等边三角形,
∴S△AOB=$\frac{\sqrt{3}}{4}$×12=$\frac{\sqrt{3}}{4}$,
∵S扇形AOB=$\frac{60π×{1}^{2}}{360}$=$\frac{π}{6}$,
∴阴影部分面积是:($\frac{π}{6}$-$\frac{\sqrt{3}}{4}$)×6=π-$\frac{3\sqrt{3}}{2}$,
故选D.
点评 此题主要考查了正六边形和圆以及扇形面积求法,注意圆与多边形的结合得出阴影面积=(S扇形AOB-S△AOB)×6是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | (-2,3) | B. | (-1,4) | C. | (3,4) | D. | (4,3) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (3,0) | B. | (3,0)或 (-3,0) | C. | (3,0) | D. | (0,3)或 (0,-3) |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| x | -2 | 0 | 2 | 4 |
| y甲 | 5 | 4 | 3 | 2 |
| y乙 | 6 | 5 | 3.5 | 0 |
| A. | a<-2 | B. | -2<a<0 | C. | 0<a<2 | D. | 2<a<4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com