精英家教网 > 初中数学 > 题目详情

若n是正整数,且x2n=5,则(2x3n2÷(4x2n)=________.

25
分析:根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n2,代入求出即可.
解答:∵n是正整数,且x2n=5,
∴(2x3n2÷(4x2n
=4x6n÷(4x2n
=(4÷4)x6n-2n
=x4n
=(x2n2
=52
=25.
故答案为:25.
点评:本题考查了整式的除法、幂的乘方与积的乘方的应用,关键是检查学生能否熟练地运用法则进行计算和变形,题目比较好,但是一道比较容易出错的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,BC=1,AC=2,把边长分别为x1,x2,x3,…,xn的n个正方形依次放入△ABC中,请回答下列问题:精英家教网
(1)按要求填表:
n 1 2 3
xn
(2)第n个正方形的边长xn=
 

(3)若m,n,p,q是正整数,且xm•xn=xp•xq,试判断m,n,p,q的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,⊙O的直径的长是关于x的二次方程x2+2(k-2)x+k=0(k是整数)的最大整数根. P是⊙O外一点,过点P作⊙O的切线PA和割线PBC,其中A为切点,点B,C是直线PBC与⊙O的交点.若PA,PB,PC的长都是正整数,且PB的长不是合数,求PA2+PB2+PC2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2、…、x40都是正整数,且x1+x2+…+x40=58,若x12+x22+…+x402的最大值为A,最小值为B,则A+B的值等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•北京)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.
(1)求k的取值范围;
(2)若k为正整数,且该方程的根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知x2+2xy+2y2+2y+1=0,求2x+y的值;
(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2-6a-8b+25=0,求△ABC的最大边c的值;
(3)已知a-b=4,ab+c2-6c+13=0,则a+b+c=
3
3

查看答案和解析>>

同步练习册答案