14£®ÒÑÖªÅ×ÎïÏßy=ax2+bx+3ÓëxÖá½»ÓÚA¡¢CÁ½µã£¬ÓëyÖá½»ÓÚµãB£¬A¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©£¨1£¬0£©£®
£¨1£©Çó´ËÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½£»
£¨2£©¶¯µãQ´ÓµãA³ö·¢£¬ÒÔÿÃë3¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔÚÏß¶ÎACÉÏÏòÖÕµãCÔ˶¯£¬Í¬Ê±¶¯µãM´ÓOµã³ö·¢ÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÔÚÏß¶ÎOBÉÏÏòÖÕµãBÔ˶¯£¬µ±ÆäÖÐÒ»¸öµãµ½´ïÖÕµãʱ£¬ÁíÒ»¸öµã¼´Í£Ö¹Ô˶¯£¬¹ýµãQ×÷xÖáµÄ´¹Ïß½»Å×ÎïÏßÓÚµãP£¬ÉèÔ˶¯µÄʱ¼äΪtÃ룮
¢Ùµ±ËıßÐÎOMPQÊǾØÐΣ¬ÇóÂú×ãÌõ¼þµÄtµÄÖµ£»
¢ÚÁ¬½áQM¡¢BC£¬µ±¡÷QOMÓëÒÔµãO¡¢B¡¢CΪ¶¥µãµÄÈý½ÇÐÎÏàËÆÊ±£¬tµÄֵΪ$\frac{1}{3}$»ò$\frac{9}{11}$»ò$\frac{9}{7}$£®

·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏßy=ax2+bx+3ÓëxÖá½»ÓÚA¡¢CÁ½µã£¬A¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©£¨1£¬0£©£¬¿ÉÒÔÇóµÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¢Ù¸ù¾ÝËıßÐÎOMPQÊǾØÐΣ¬¿ÉÖªµãPµÄ×Ý×ø±êµÈÓÚµãMµÄ×Ý×ø±ê£¬´Ó¶ø¿ÉÒÔÇóµÃÏàÓ¦µÄtµÄÖµ£»
¢Ú¸ù¾ÝÒÑÖªÌõ¼þ¿ÉÖªÁ½¸öÈý½ÇÐÎÏàËÆÊ±£¬´æÔÚÈýÖÖÇé¿ö£¬È»ºó»­³öÏàÓ¦µÄͼÐΣ¬·ÖÀà½øÐнâ´ð½â¿É£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßy=ax2+bx+3ÓëxÖá½»ÓÚA¡¢CÁ½µã£¬A¡¢CÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©£¨1£¬0£©£¬
¡à$\left\{\begin{array}{l}{9a-3b+3=0}\\{a+b+3=0}\end{array}\right.$
½âµÃ£¬$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$
¡àÅ×ÎïÏߵĺ¯Êý¹ØÏµÊ½Îª£ºy=-x2-2x+3£»
£¨2£©¢Ùµ±ËıßÐÎOMPQÊǾØÐÎʱ£¬
¡ßÓÉÌâÒâ¿ÉµÃ£¬µãQµÄ×ø±êΪ£¨-3+3t£¬0£©£¬µãMµÄ×ø±êΪ£¨0£¬2t£©£¬µãPÔÚy=-x2-2x+3ÉÏ£¬PQ¡ÍxÖᣬ
¡àµãPµÄ×ø±êΪ£¨-3+3t£¬-£¨-3+3t£©2-2£¨-3+3t£©+3£©£¬
¡à-£¨-3+3t£©2-2£¨-3+3t£©+3=2t£¬
½âµÃ£¬t=0»òt=$\frac{10}{9}$£¬
¹Êµ±ËıßÐÎOMPQÊǾØÐÎʱ£¬tµÄֵΪ$\frac{10}{9}$£»
¢ÚÁ¬½áQM¡¢BC£¬µ±¡÷QOMÓëÒÔµãO¡¢B¡¢CΪ¶¥µãµÄÈý½ÇÐÎÏàËÆÊ±£¬´æÔÚÈýÖÖÇé¿ö£¬
µÚÒ»ÖÖÇé¿ö£¬µ±¡ÏOQM=¡ÏOBC£¬¡ÏQOM=¡ÏBOCʱ£¬ÈçÏÂͼһËùʾ£¬

ÓÉÒÑÖª¿ÉµÃ£¬µãQµÄ×ø±êΪ£¨-3+3t£¬0£©£¬µãMµÄ×ø±êΪ£¨0£¬2t£©£¬µãCµÄ×ø±êΪ£¨1£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬3£©
ÔòOQ=3-3t£¬OM=2t£¬OC=1£¬OB=3£¬
¡ß¡ÏOQM=¡ÏOBC£¬¡ÏQOM=¡ÏBOC£¬
¡à¡÷QOM¡×¡÷BOC£¬
¡à$\frac{OQ}{OB}=\frac{OM}{OC}$£¬
¼´$\frac{3-3t}{3}=\frac{2t}{1}$£¬
½âµÃ£¬t=$\frac{1}{3}$£»
µÚ¶þÖÖÇé¿ö£¬µ±¡ÏOQM=¡ÏOCB£¬¡ÏQOM=¡ÏCOB£¬ÈçÏÂͼ¶þËùʾ£¬

ÓÉÒÑÖª¿ÉµÃ£¬µãQµÄ×ø±êΪ£¨-3+3t£¬0£©£¬µãMµÄ×ø±êΪ£¨0£¬2t£©£¬µãCµÄ×ø±êΪ£¨1£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬3£©
ÔòOQ=3-3t£¬OM=2t£¬OC=1£¬OB=3£¬
¡ß¡ÏOQM=¡ÏOCB£¬¡ÏQOM=¡ÏCOB£¬
¡à¡÷QOM¡×¡÷BOC£¬
¡à$\frac{OQ}{OC}=\frac{OM}{OB}$£¬
¼´$\frac{3-3t}{1}=\frac{2t}{3}$£¬
½âµÃ£¬t=$\frac{9}{11}$£»
µÚÈýÖÖÇé¿ö£¬µ±¡ÏOQM=¡ÏOCB£¬¡ÏQOM=¡ÏCOB£¬ÈçÏÂͼÈýËùʾ£¬

ÓÉÒÑÖª¿ÉµÃ£¬µãQµÄ×ø±êΪ£¨-3+3t£¬0£©£¬µãMµÄ×ø±êΪ£¨0£¬2t£©£¬µãCµÄ×ø±êΪ£¨1£¬0£©£¬µãBµÄ×ø±êΪ£¨0£¬3£©
ÔòOQ=3t-3£¬OM=2t£¬OC=1£¬OB=3£¬
¡ß¡ÏOQM=¡ÏOCB£¬¡ÏQOM=¡ÏCOB£¬
¡à¡÷QOM¡×¡÷BOC£¬
¡à$\frac{OQ}{OC}=\frac{OM}{OB}$£¬
¼´$\frac{3t-3}{1}=\frac{2t}{3}$£¬
½âµÃ£¬t=$\frac{9}{7}$£»
¹Ê´ð°¸Îª£º$\frac{1}{3}$»ò$\frac{9}{11}$»ò$\frac{9}{7}$£®

µãÆÀ ±¾Ì⿼²é¶þ´Îº¯Êý×ÛºÏÌâ¡¢Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¾ØÐεÄÐÔÖÊ¡¢Èý½ÇÐεÄÏàËÆ¡¢·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬»áÇó¶þ´Îº¯ÊýµÄ½âÎöʽ£¬¸ù¾Ý¾ØÐεÄÐÔÖÊ£¬ÀûÓÃÊýÐνáºÏµÄ˼Ïë½â´ðÏà¹ØÎÊÌ⣬ÀûÓÃÈý½ÇÐεÄÏàËÆºÍ·ÖÀàÌÖÂÛµÄÊýѧ˼Ïë½â´ðÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èô¶àÏîʽ2x2-3£¨3+y-x2£©+mx2µÄÖµÓëxµÄÖµÎ޹أ¬Ôòm=-5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ð¡ÕźÍСÀîͬʱ´ÓѧУ³ö·¢£¬²½ÐÐ15ǧÃ×È¥ÏØ³Ç¹ºÂòÊé¼®£¬Ð¡ÕűÈСÀîÿСʱ¶à×ß1ǧÃ×£¬½á¹û±ÈСÀîÔçµ½°ëСʱ£¬Á½Î»Í¬Ñ§Ã¿Ð¡Ê±¸÷¶à×ß¶àÉÙǧÃ×£¿ÉèСÀîÿСʱ×ßxǧÃ×£¬ÒÀÌâÒ⣬µÃµ½·½³Ì£¨¡¡¡¡£©
A£®$\frac{15}{x+1}$-$\frac{15}{x}$=$\frac{1}{2}$B£®$\frac{15}{x}-\frac{15}{x+1}=\frac{1}{2}$C£®$\frac{15}{x-1}-\frac{15}{x}=\frac{1}{2}$D£®$\frac{15}{x}-\frac{15}{x-1}=\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôa2+ab-b2=0ÇÒab¡Ù0£¬Ôò$\frac{b}{a}$µÄֵΪ$\frac{¡À\sqrt{5}+1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨-1£¬1£©£¬B£¨-3£¬1£©£¬C£¨-1£¬4£©£®
£¨1£©½«¡÷ABCÑØxÖáÕý·½ÏòÆ½ÒÆ3¸öµ¥Î»µÃµ½¡÷A1B1C1£¬»­³ö¡÷A1B1C1£¬²¢Ð´³öµãB1×ø±ê£®
£¨2£©½«¡÷ABCÈÆ×ŵãB˳ʱÕëÐýת90¡ãºóµÃµ½¡÷A2BC2£¬ÇëÔÚͼÖл­³ö¡÷A2BC2£¬²¢Ð´³öµãC2×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ð¡Ã÷µÄÊé°üÀïÖ»·ÅÁËͬÑù´óСµÄÊÔ¾í¹²5ÕÅ£¬ÆäÖÐÓïÎÄ4ÕÅ£¬Êýѧ1ÕÅ£®ÈôËæ»úµØ´ÓÊé°üÖгé³ö1ÕÅ£¬³é³öµÄÊÔ¾íÇ¡ºÃÊÇÊýѧÊÔ¾íµÄ¸ÅÂÊÊÇ$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®$\sqrt{3}$-2µÄ¾ø¶ÔÖµÊÇ£¨¡¡¡¡£©
A£®2-$\sqrt{3}$B£®$\sqrt{3}$-2C£®$\sqrt{3}$+2D£®-$\sqrt{3}$-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®·´±ÈÀýº¯Êýy=$\frac{{k}_{1}}{x}$£¨x£¼0£©£¬y=$\frac{{k}_{2}}{x}$£¨x£¾0£©£¬y=$\frac{{k}_{3}}{x}$£¨x£¾0£©µÄͼÏóÈçͼËùʾ£¬Ôòk1£¬k2£¬k3µÄ´óС¹ØÏµÊÇ£¨¡¡¡¡£©
A£®k1£¼k2£¼k3B£®k1£¼k3£¼k2C£®k3£¼k2£¼k1D£®k3£¼k1£¼k2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ö±¾¶Ëù¶ÔµÄÔ²ÖܽÇÊÇÖ±½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸