精英家教网 > 初中数学 > 题目详情

【题目】某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.
(1)求出被调查的学生人数;
(2)把折线统计图补充完整;
(3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?

【答案】
(1)解:被调查的学生数为:40÷20%=200(人)
(2)解:医生的人数是:200×15%=30(人);

教师的人数是:200﹣30﹣40﹣20﹣70=40(人),

补图如下:


(3)解:如图:

由树状图可知:三人伸手的情况有(手心、手心、手心),(手心,手心,手背),(手心,手背,手心),(手心,手背,手背)4种,每种情况出现的可能性都是相同的,其中大刚伸手心与其他两人不同的情况有1种,所以P大刚=

所以大刚获胜的概率为


【解析】(1)根据乒乓球人数和所占的百分比即可求出总人数;(2)用总人数乘以足球所占的百分比求出足球的人数,再用总人数减去篮球、足球、乒乓球和其他的人数,求出羽毛球的人数,从而补全折线统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与大刚获胜的情况数,再利用概率公式即可求得答案.
【考点精析】根据题目的已知条件,利用扇形统计图和折线统计图的相关知识可以得到问题的答案,需要掌握能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地反映事物的变化情况,但是不能清楚地表示出在总体中所占的百分比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点O为坐标原点,我们把横、纵坐标都为整数的点称为整点,记定点都是整点的三角形为整点三角形.如图,已知整点O(0,0),A(2,4),请在所给网格区域(含边界)上按要求画图.

(1)在图1中画一个整点三角形OAB,其中点B在第一象限,且点B的横、纵坐标之和等于点A的横坐标;

(2)在图2中画一个整点三角形OAC,其中点C的坐标为(3t,t),且点C的横、纵坐标之和是点A的纵坐标的2倍.请直接写出△OAC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是⊙O上一点,⊙O的半径为 ,D、E分别是弦AC、BC上一动点,且OD=OE= ,则AB的最大值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=ADAB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD=60°,AB=2,EDC边上一个动点,FAB边上一点,∠AEF=30°.设DE=x,图中某条线段长为y,yx满足的函数关系的图象大致如图所示,则这条线段可能是图中的(  ).

A. 线段EC B. 线段AE C. 线段EF D. 线段BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的一元二次方程mx2-3(m-1)x+2m-3=0(m>3).

(1)求证:方程总有两个不相等的实数根;

(2)设方程的两个实数根分别为x1,x2,且x1<x2

①求方程的两个实数根x1,x2(用含m的代数式表示);

②若mx1<8-4x2,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(1)4x﹣5=3x+2

(2)

(3)2x﹣3(6﹣x)=3x﹣4(5﹣x)

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)解不等式组 ,并写出不等式组的整数解.
(2)化简分式:( )÷ ,再从﹣2<x<3的范围内选取一个你最喜欢的值代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是( )
A.一直减小
B.一直不变
C.先减小后增大
D.先增大后减小

查看答案和解析>>

同步练习册答案