精英家教网 > 初中数学 > 题目详情

下面式子中是多项式的是


  1. A.
    数学公式
  2. B.
    x2+y=2
  3. C.
    0
  4. D.
    a2xc+2yb-3
D
分析:根据多项式的定义逐一进行判定.
解答:A、该代数式是分式,它不是多项式,故本选项错误;
B、x2+y=2是方程,不是多项式,故本选项错误;
C、0是单项式,不是多项式,故本选项错误;
D、a2xc+2yb-3是几个单项式和的形式,是多项式,故本选项正确.
故选:D.
点评:本题考查了多项式.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习探究,会使你大开眼界并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)           ①
=2002-52                   ②
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称).
(2)用简便方法计算:9×11×101×10001(4分)
问题2:对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2xa-3a2,就不能直接运用公式了.
此时,我们可以在二次三项式x2+2xa-3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2xa-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-4a2=(x+a)2-(2a)2=(x+3a)(x-a)
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
利用“配方法”分解因式:a2-6a+8.

查看答案和解析>>

科目:初中数学 来源: 题型:

31、问题1:同学们已经体会到灵活运用乘法公式给整式乘法及多项式的因式分解带来的方便,快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦.
例:用简便方法计算195×205.
解:195×205
=(200-5)(200+5)①
=2002-52
=39975
(1)例题求解过程中,第②步变形是利用
平方差公式
(填乘法公式的名称);
(2)用简便方法计算:9×11×101×10001.
问题2:对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-4a-12.
问题3:若x-y=5,xy=3,求:①x2+y2;②x4+y4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

下面式子中是多项式的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

探究下面的问题:

(1)在图甲中,阴影部分的面积和为
a2-b2
a2-b2
(写成两数平方差的形式);
(2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是
a+b
a+b
,宽是
a-b
a-b
,它的面积是
(a+b)(a-b)
(a+b)(a-b)
(写成两个多项式的形式);
(3)由这两个图可以得到的乘法公式是
(a+b)(a-b)=a2-b2
(a+b)(a-b)=a2-b2
(用式子表示);
(4)运用这个公式计算:(x-2y+3z)(x+2y-3z)

查看答案和解析>>

同步练习册答案