精英家教网 > 初中数学 > 题目详情
12.如图,在?ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于$\frac{1}{2}$PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为2.

分析 根据作图过程可得得BE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,

解答 解:根据作图的方法得:BE平分∠ABC,
∴∠ABE=∠CBE
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AE=AB=3,
∴DE=AD-AE=5-3=2;
故答案为:2.

点评 此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:

(1)此次抽样调查的样本容量是100.
(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数.
(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为(  )
A.(1,-1)B.(-1,-1)C.($\sqrt{2}$,0)D.(0,-$\sqrt{2}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为(  )
A.6B.6$\sqrt{2}$C.2$\sqrt{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学记数法表示为(  )
A.0.157×1010B.1.57×108C.1.57×109D.15.7×108

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.要使式子$\frac{\sqrt{x-1}}{2}$有意义,则x的取值范围是(  )
A.x>1B.x>-1C.x≥1D.x≥-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)计算:|1-$\sqrt{3}$|+3tan30°-($\sqrt{3}-5$)0-(-$\frac{1}{3}$)-1
(2)解不等式组$\left\{\begin{array}{l}{2x+1>0①}\\{\frac{2-x}{2}≥\frac{x+3}{3}②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数(  )
A.35°B.C.15°D.25°

查看答案和解析>>

同步练习册答案