精英家教网 > 初中数学 > 题目详情

【题目】如图,∠AOP=∠BOP15°,PCOAPDOA,若PC4,则PD的长为_____

【答案】2

【解析】

PPE垂直与OB,由∠AOP=BOP,PD垂直于OA,利用角平分线定理得到PE=PD,由PCOA平行,根据两直线平行得到一对内错角相等,又OP为角平分线得到一对角相等,等量代换可得∠COP=CPO,又∠ECP为三角形COP的外角,利用三角形外角的性质求出∠ECP=30°,在直角三角形ECP中,由30°角所对的直角边等于斜边的一半,由斜边PC的长求出PE的长,即为PD的长.

PPEOB,交OB与点E,

∵∠AOP=BOP,PDOA,PEOB,

PD=PE,

PCOA,

∴∠CPO=POD,

又∠AOP=BOP=15°,

∴∠CPO=BOP=15°,

又∠ECPOCP的外角,

∴∠ECP=COP+CPO=30°,

在直角三角形CEP中,∠ECP=30°,PC=4,

PE=PC=2,

PD=PE=2.

故答案为:2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】当a、b满足条件a>b>0时, =1表示焦点在x轴上的椭圆.若 =1表示焦点在x轴上的椭圆,则m的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知P(x,y)为不等式组 表示的平面区域M内任意一点,若目标函数z=5x+3y的最大值等于平面区域M的面积,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN= π,在△ABC中,角A、B、C所对的边分别是a、b、c.
(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;
(Ⅱ)若c= ,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=|x+a|+|x+ |(a>0) (Ⅰ)当a=2时,求不等式f(x)>3的解集;
(Ⅱ)证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制.
(Ⅰ)地产数据研究院研究发现,3月至7月的各月均价y(万元/平方米)与月份x之间具有较强的线性相关关系,试建立y关于x的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;
(Ⅱ)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X,求X的分布列和数学期望.
参考数据: =25, =5.36, =0.64
回归方程 = x+ 中斜率和截距的最小二乘估计公式分别为:
= =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】执行右面的程序框图,如果输出的a值大于2017,那么判断框内的条件为(
A.k<9?
B.k≥9?
C.k<10?
D.k≥11?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:

月份x

1

2

3

4

5

y(万盒)

4

4

5

6

6


(1)该同学为了求出y关于x的线性回归方程 = + ,根据表中数据已经正确计算出 =0.6,试求出 的值,并估计该厂6月份生产的甲胶囊产量数;
(2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.

查看答案和解析>>

同步练习册答案