精英家教网 > 初中数学 > 题目详情

直角三角形ABC中,BC=AC,弧DEF圆心为A.已知两阴影面积相等,那么AD:DB=________.


分析:若两个阴影部分的面积相等,那么△ABC和扇形ADF的面积就相等,可分别表示出两者的面积,然后列等式求出AD与DB的比.
解答:设AB=BC=a 则AB=a,
∵两阴影面积相等,∴SABC=S扇形ADF
a2=AD2•π,
∴AD=
∴AD:DB=AD:(AB-AD)=
故答案为
点评:本题主要考查了等腰直角三角形的性质以及扇形面积的计算方法,能够根据题意得到△ABC和扇形ADF的面积相等,是解决此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=
1
5
,则AD的长是(  )
A、
2
B、2
C、1
D、2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角三角形ABC中,∠C=90°,AB=5,AC=3.点P、Q分别是BC边和AB边上的动点,点P从点C向点B运动,点Q从点A向点B运动,QR⊥BC,垂足为R,设P、Q同时运动,并且当P运动4x单位长度时,Q运动5(1-x)单位长度.是否存在x的值,使以P、Q、R为顶点的三角形与△ACP相似?若存在,求出所有x的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角三角形ABC中,∠C=90°,三内角∠A,∠B,∠C的对边分别是a,b,c,若a=15,c=25,则b=
20
20

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.
(1)求证:△ADC≌△AEB;
(2)判断△EGM是什么三角形,并证明你的结论;
(3)判断线段BG、AF与FG的数量关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角三角形ABC中,∠ABC=90°,点D、E分别是AC、BC的中点,AB=3,BC=4,则DE和BD的长分别为(  )

查看答案和解析>>

同步练习册答案