如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形, M、N分别是CE、CF的中点.
1.求证:△DMN是等边三角形;
2.连接EF,Q是EF中点,CP⊥EF于点P. 求证:DP=DQ.
同学们,如果你觉得解决本题有困难,可以阅读下面两位同学的解题思路作为参考:
小聪同学发现此题条件中有较多的中点,因此考虑构造三角形的中位线,添加出了一些辅助线;小慧同学想到要证明线段相等,可通过证明三角形全等,如何构造出相应的三角形呢?她考虑将△NCM绕顶点旋转到要证的对应线段的位置,由此猜想到了所需构造的三角形的位置.
1.取AC的中点G,连接NG、DG.
∴DG=BC,DG∥BC;△NGC是等边三角形.
∴NG = NC,DG = CM.
∵∠1 + ∠2 = 180º,
∴∠NGD + ∠2 = 240º.
∵∠2 + ∠3 = 240º,
∴∠NGD =∠3.
∴△NGD≌△NCM .
∴ND = NM ,∠GND =∠CNM.
∴∠DNM =∠GNC = 60º.
∴△DMN是等边三角形.
2.连接QN、PM.
∴QN =CE=PM.
Rt△CPE中,PM =EM,∴∠4= ∠5.
∵MN∥EF,∴∠5=∠6,∠7= ∠8.
∵NQ∥CE,∴∠7=∠4.
∴∠6= ∠8.
∴∠QND= ∠PMD.
∴△QND≌△PMD.
∴DQ= DP.
解析:
1.先证出NG = NC,DG = CM,再证出△NGD≌△NCM,得出△DMN是等边三角形;
2.根据题意得出QN =CE=PM,然后证明△QND≌△PMD,从而得出DQ= DP.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com