精英家教网 > 初中数学 > 题目详情

如图,正方形OABC的顶点O在坐标原点,且OA和AB边所在的直线的解析式分别为:y=数学公式x和y=-数学公式x+数学公式.D、E分别为边OC和AB的中点,P为OA边上一动点(点P与点O不重合),连接DE和CP,其交点为Q.
(1)求证:点Q为△COP的外心;
(2)求正方形OABC的边长;
(3)当⊙Q与AB相切时,求点P的坐标.

(1)证明:∵D、E分别为正方形OABC中OC、AB的中点,
∴DE∥OA.
∴Q也是CP的中点.
又∵CP是Rt△COP的斜边,
∴点Q为△COP的外心.

(2)解:由方程组
解得
∴点A的坐标为().
过点A作AF⊥Ox轴,垂足为点F.
∴OF=,AF=
由勾股定理,得OA==
∴正方形OABC的边长为

(3)解:如图,当△COP的外接圆⊙Q与AB相切时,
∵圆心Q在直线DE上,DE⊥AB,
∴E为⊙Q与AB相切的切点.
又∵AE和APO分别是⊙Q的切线与割线,
∴AE2=AP•AO.
∵OA=,AE=OA,
∴AP=OA=
∴当⊙Q与AB相切时,OP=-=
作PH⊥Ox轴,垂足为H.
∵PH∥AF,∴
∴OH==
PH==
∴点P的坐标为().
分析:(1)要证点Q为△COP的外心,需证QC=QP=QO,而△COP中,DQ为中位线,则即可得证;
(2)由OA和AB边的解析式求出A点坐标,由两点之间坐标公式求出OA的长,即正方形边长;
(3)当⊙Q与AB相切时,作出⊙Q,由切线和割线的关系,求出P点坐标.
点评:本题考查的问题较为复杂,是一次函数和几何知识相结合的问题,同学们要注意几何知识的熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为16,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m,n)是函数y=
k
x
(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴精英家教网的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S.(提示:考虑点P在点B的左侧或右侧两种情况)
(1)求B点坐标和k的值;
(2)当S=8时,求点P的坐标;
(3)写出S与m的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形OABC、ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B、E在函数y=
4x
  (x>0)
的图象上.
(1)求正方形OABC的面积;
(2)求E点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC和正方形ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=
1
x
(x>0)的图象上,则E点的坐标是
5
+1
2
5
-1
2
5
+1
2
5
-1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:
2
,点A的坐标为(1,0),则OD=
2
2
,点E的坐标为
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形OABC的面积为4,点D为坐标原点,点B在函数y=
k
x
(k<0,x<0)的图象上,点P(m,n)是函数y=
k
x
(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、),轴的垂线,垂足分别为E、F.
(1)设矩形OEPF的面积为s1,求s1
(2)从矩形DEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为s2.写出s2与m的函数关系式,并标明m的取值范围.

查看答案和解析>>

同步练习册答案