精英家教网 > 初中数学 > 题目详情

如图,Rt△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,DE⊥AB于点E,AC=7cm,△DEB的周长为12cm.
(1)求证:AC=AE;
(2)求△ABC的周长.

(1)证明:∵∠C=90°DE⊥AB,
∴∠C=∠DEA=90°,
又∵AD平分∠BAC,
∴CD=DE,
在Rt△ACD和Rt△AED中,AD=DA,
∴Rt△ACD≌Rt△AED,
∴AC=AE;

(2)解:∵△DEB的周长为12,
∴BD+DE+EB=BD+CD+EB=12,
∴△ABC的周长为:AC+AE+EB+BD+DC=AC+AE+12=26.
分析:(1)由角平分线性质得CD=DE,且有AD=DA,利用“HL”证明Rt△ACD≌Rt△AED即可;
(2)根据(1)中结论CD=DE,将与周长相关的线段转化即可.
点评:本题考查了角平分线性质,全等三角形的证明,关键是明确图形中相等线段,相等角,全等三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC点边上一点,DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的长(2)求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,则CD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半径;
(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的长.

查看答案和解析>>

同步练习册答案