如图①,A、D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次联结P、O、D三点所围成图形的面积为Scm
2,点P运动的时间为t s.已知S与t之间的函数关系如图②中折线段OEFGHI所示.

阅读理解,并回答下列问题:
(1)从图②点E可以看出刚开始的时候,随着点P的运动,面积S并没有发生变化,由此可以判断点P的运动方向为
(填入顺时针或逆时针)
(2)从图②点F(6,4)可以得到:OD+OA=6;
OD×OA=4,且OD>3.由此可以得到OD、OA的长度,进一步分析,可以求得A、B两点的坐标:A(
,
)、B(
,
);
(3)探究1:是否存在某一时刻,直线PD将五边形OABCD分成周长相等的两部分?如果存在,简要说明这时点P的坐标;如果不存在,说明理由.
(4)探究2:是否存在某一时刻,直线PD将五边形OABCD分成面积相等的两部分?如果存在,求出直线PD的函数解析式;如果不存在,说明理由.