精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线

(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.
(1)
(2)M点坐标为(0,0)或

分析:(1)根据抛物线的对称轴得到抛物线的顶点式,然后代入已知的两点理由待定系数法求解即可。
(2)首先求得点B的坐标,然后分CM=BM时和BC=BM时两种情况根据等腰三角形的性质求得点M的坐标即可。
解:(1)∵抛物线的对称轴是直线,∴设抛物线的解析式
把A(2,0)C(0,3)代入得:,解得:
∴抛物线的解析式为,即
(2)由y=0得,∴x1=1,x2=﹣3。
∴B(﹣3,0)。
分两种情况讨论(因为BC=MC时,点M已不在线段AB上,无需考虑):
①CM=BM时,
∵BO=CO=3, 即△BOC是等腰直角三角形,
∴当M点在原点O时,△MBC是等腰三角形。
∴M点坐标(0,0)。
②BC=BM时,
在Rt△BOC中,BO=CO=3,∴由勾股定理得
∴BM=
∴M点坐标
综上所述,当△MBC为等腰三角形时,M点坐标为(0,0)或
题型】解答题
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,
给出下列命题:
①abc<0;②b>2a;③a+b+c=0
④ax2+bx+c=0的两根分别为﹣3和1;
⑤8a+c>0.其中正确的命题是               

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于点A和点B,与y轴交于点C,已知点B的坐标为(3,0).

(1)求a的值和抛物线的顶点坐标;
(2)分别连接AC、BC.在x轴下方的抛物线上求一点M,使△AMC与△ABC的面积相等;
(3)设N是抛物线对称轴上的一个动点,d=|AN﹣CN|.探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值;若不存在,请简单说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线过点A(1,0),顶点为B,且抛物线不经过第三象限。
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线经过点B,且于该抛物线交于另一点C(),求当x≥1时y1的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).

(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2013年四川资阳3分)如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是【   】
A.﹣4<P<0B.﹣4<P<﹣2C.﹣2<P<0D.﹣1<P<0

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

由示意图可见,抛物线y=x2 +px+q   ①若有两点A(a,yl)、B(b,y2)(其中a<b)在x轴下方,则抛物线必与x轴有两个交点C(x1,O)、D(x2,O)(其中xl<x2),且满足xl<a<b<x2.当A(1,- 2.005),且xl、x2均为整数时,求二次函数的表达式,

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线与x轴交于点A、B,与y轴交于点C,则△ABC的面积为             

查看答案和解析>>

同步练习册答案