精英家教网 > 初中数学 > 题目详情
如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(-2,6).

(1)求抛物线的函数解析式;
(2)直线m与⊙C相切于点A交y轴于点D,动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动,点P的速度为每秒1个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值;
(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.
(1)y=x2-2x;(2)1.8;(3)(

试题分析:(1)由抛物线y=ax2+bx经过点A(4,0)与点(-2,6)即可根据待定系数法求解;
(2)过点O作OF⊥AD,连接AC交OB于点E,由垂径定理得AC⊥OB.根据切线的性质可得AC⊥AD,即可证得四边形OFAE是矩形,由tan∠AOB=可得sin∠AOB=,即可求得AE、OD的长,当PQ⊥AD时,OP=t,DQ=2t.则在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ-FQ=DQ-OP=2t-t=t,再根据勾股定理求解;
(3)设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大,由tan∠AOB=可得直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.点R既在直线l上,又在抛物线上,可得x2-2x=x+b,再根据直线l与抛物线有唯一交点R(相切),可得方程2x2-11x-4b=0有两个相等的实数根,即可得到判别式△=0,从而可以求得结果.
(1)∵抛物线y=ax2+bx经过点A(4,0)与点(-2,6),
,解得a=,b=-2
∴抛物线的解析式为:y=x2-2x;
(2)过点O作OF⊥AD,连接AC交OB于点E,由垂径定理得AC⊥OB.

∵AD为切线,
∴AC⊥AD, 
∴AD∥OB.
∴四边形OFAE是矩形,
∵tan∠AOB=   
∴sin∠AOB=
∴AE=OA·sin∠AOB=4×=2.4,
OD=OA·tan∠OAD=OA·tan∠AOB=4×=3.
当PQ⊥AD时,OP=t,DQ=2t.
则在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ-FQ=DQ-OP=2t-t=t,
由勾股定理得:DF=
∴t=1.8秒;
(3)设直线l平行于OB,且与抛物线有唯一交点R(相切),
此时△ROB中OB边上的高最大,所以此时△ROB面积最大.  
∵tan∠AOB=    
∴直线OB的解析式为y=x,
由直线l平行于OB,可设直线l解析式为y=x+b.
∵点R既在直线l上,又在抛物线上,
x2-2x=x+b,化简得:2x2-11x-4b=0.
∵直线l与抛物线有唯一交点R(相切),
∴方程2x2-11x-4b=0有两个相等的实数根
∴判别式△=0,即112+32b=0,解得b=
此时原方程的解为x=,即xR=
而yR=xR2-2xR=
∴点R的坐标为R().
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线

(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线)与y轴交于点A,其对称轴与x轴交于点B。

(1)求点A,B的坐标;
(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;
(3)若该抛物线在这一段位于直线l的上方,并且在这一段位于直线AB的下方,求该抛物线的解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx﹣4与x轴交于A(4,0)、B(﹣2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D,连接CP.

(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:直线轴于点,交轴于点,抛物线经过(1,0)三点.

(1)求抛物线的解析式;
(2)若点的坐标为(-1,0),在直线上有一点,使相似,求出点的坐标;
(3)在(2)的条件下,在轴下方的抛物线上,是否存在点,使的面积等于四边形的面积?如果存在,请求出点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点(-1,-4)且过点(0,-3),直线l是它的对称轴。

(1)求此抛物线的解析式;
(2)设抛物线交x轴于点A、B(A在B的左边),交y轴于点C,P为l上的一动点,当△PBC的周长最小时,求P点的坐标。
(3)在直线l上是否存在点M,使△MBC是等腰三角形,若存在,直接写出符合条件的点M的坐标;若不存在请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

随着“六一”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出。
(1)若某月销售收入2000万元,则该月甲、乙礼品的产量分别是多少?
(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?
(3)该厂在销售中发现:甲礼品售价每提高1元,销量会减少4万件,乙礼品售价不变,不管多少产量都能卖出。在(2)的条件下,为了获得更大的利润,该厂决定提高甲礼品的售价,并重新调整甲、乙礼品的生产数量,问:提高甲礼品的售价多少元时可获得最大利润,最大利润为多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是(   )
A.1B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图二次函数的图象与轴交于(– 1,0),(3,0);下列说法正确的是(    )
A.
B.当时,y随x值的增大而增大
C.
D.当时,

查看答案和解析>>

同步练习册答案