精英家教网 > 初中数学 > 题目详情
5.若(x-a)(x-b)=x2+mx+n,则m,n的值分别是(  )
A.m=a+b,n=abB.m=a+b,n=-abC.m=-(a+b),n=abD.m=-(a+b),n=-ab

分析 根据多项式与多项式相乘的法则进行计算,对应相等即可得到答案.

解答 解:(x-a)(x-b)=x2-(a+b)x+ab,
∴m=-(a+b),n=ab,
故选:C.

点评 本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.
小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.
下面是小南的探究过程:
(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整;
已知:如图,在筝形ABCD中,AB=AD,CB=CD.
求证:∠B=∠D.
证明:连接AC,
在△ABC和△ADC中,
$\left\{\begin{array}{l}\;AB=AD\\ \;BC=DC\\ AC=AC\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠B=∠D
由以上证明可得,筝形的角的性质是:筝形有一组对角相等.
(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):筝形的两条对角线互相垂直.
(3)筝形的定义是判定一个四边形为筝形的方法之一.从边、角、对角线或性质的逆命题等角度可以进一步探究筝形的判定方法,请你写出筝形的一个判定方法(定义除外),并说明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知在四边形ABCD中,点E、F分别是BC、CD边上的一点.
(1)如图1:当四边形ABCD是正方形时,作出将△ADF绕点A顺时针旋转90度后的图形△ABM;并判断点M、B、C三点是否在同一条直线上是(填是或否);
(2)如图1:当四边形ABCD是正方形时,且∠EAF=45°,请直接写出线段EF、BE、DF三者之间的数量关系EF=BE+DF;
(3)如图2:当AB=AD,∠B=∠D=90°,∠EAF是∠BAD的一半,问:(2)中的数量关系是否还存在,并说明理由;
(4)在(3)的条件下,将点E平移到BC的延长线上,请在图3中补全图形,并写出EF、BE、DF的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算或化简:
(1)(-$\frac{1}{2}$)0+(-2)3+($\frac{1}{2}$)-1+2            
(2)2m•m2+(2m32÷m3
(3)(x+1)2-(-x-2)(-x+2)
(4)(2a-b+3)(2a+b-3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.从2开始,连续的偶数相加,它们和的情况如下表:
加数的个数(n)和 (S)
12=1×2
22+4=6=2×3
32+4+6=12=3×4
42+4+6+8=20=4×5
52+4+6+8+10=30=5×6
    …
(1)若n=8时,则S的值为72.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=n(n+1).
(3)根据上题的规律计算2+4+6+8+10+…+98+100的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.计算:$\sqrt{8}$-|2$\sqrt{2}$-2|-π0+($\frac{1}{2}$)-2=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.化简求值:[(x+y)2-(x+2y)(x-2y)]÷y,其中x=-1,y=1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.给出下列命题:
①平行四边形的对角线互相平分;
②对角线互相平分的四边形是平行四边形;
③菱形的对角线互相垂直;
④对角线互相垂直的四边形是菱形.
其中真命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,在矩形ABCD中,AB=1,BC=$\frac{5}{2}$,M为BC中点,连接AM,过D作DE⊥AM于E,则DE的长度为(  )
A.1B.$\frac{3\sqrt{13}}{13}$C.$\frac{10\sqrt{41}}{41}$D.$\frac{\sqrt{41}}{10}$

查看答案和解析>>

同步练习册答案