精英家教网 > 初中数学 > 题目详情
如图,抛物线形的拱桥在正常水位时,水面AB的宽为20m.涨水时水面上升了3m,达到了警戒水位,这时水面宽CD=10m.

(1)求抛物线的解析式;
(2)当水位继续以每小时0.2m的速度上升时,再经过几小时就到达拱顶?
(1)若以AB所在直线为x轴,AB中点为原点,此时抛物线解析式为
(2)经过5小时到达拱顶

试题分析:(1)以AB所在直线为x轴,AB中点为原点,依题意得A(-10,0)B(10,0)C(-5,3),设函数解析式为,将各点代入可得,即
(2)由于,即顶点纵坐标为4,即拱桥顶点距离AB为4m,所以距离CD为1m,每小时0.2m上升,所以经过5小时候,达到拱顶
点评:本题难度不大,答案不唯一,不同的坐标系,有不同的解析式,但是第二问的答案是统一的。做此类题目时,一般以中线所在直线为y轴
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与x轴交于AB 两点,与轴交于点C,且点B的坐标为(1,0),点C的坐标为,一次函数的图象过点AC

(1)求二次函数的解析式;
(2)求二次函数的图象与x轴的另一个交点A的坐标;
(3)根据图象写出时,的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分10分 第(1)小题4分,第(2)小题6分)
已知:二次函数≠0的图像经过点(3,5)、(2,8)、(0,8).
(1)求这个二次函数的解析式;
(2)已知抛物线≠0,≠0,且满足≠0,1,则我们称抛物线互为“友好抛物线”,请写出当时第(1)小题中的抛物线的友好抛物线,并求出这友好抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,抛物线与x轴交于点A(-1,0),B(5,0),给出下列判断:
①ac<0;②;③b+4a=0;④4a-2b+c<0.其中正确的是(   )
A.①②B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=2x向左平移1个单位,再向上平移3个单位得到的抛物线,其表达式为(   )
A.y=2(x+1)+3B.y=2(x-1)-3
C.y=2(x+1)-3D.y=2(x-1)+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第天(为整数)的捕捞与销售的相关信息如表:
鲜鱼销售单价(元/kg)
20
单位捕捞成本(元/kg)
5-
捕捞量(kg)
950-10x
(1)在此期间该养殖场每天的捕捞量与前一天的捕捞量相比是如何变化的         (填“增加”或“减少”了多少kg.)
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第天的收入(元)与(天)之间的函数关系式?(当天收入=日销售额—日捕捞成本)
(3)试说明⑵中的函数的变化情况,并指出在第几天取得最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=x2-2x-3的顶点坐标是
A.(1,-4)B.(2,-4)C.(-1,4)D.(-2,-3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是二次函数y=ax2+bx+c (a¹0)在平面直角坐标系中的图象,根据图形判断 ①>0;②++<0;③2-<0;④2+8a>4ac中,正确的是(填写序号)     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.

(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

查看答案和解析>>

同步练习册答案