精英家教网 > 初中数学 > 题目详情
如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.

(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6),过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.
(1).图象如图所示:

(2)点P的速度每秒厘米,AC=12厘米;
(3)①表示△PCQ与△DCQ的面积差(或△PDQ面积);②

试题分析:(1)已知了CD=3,根据Q点的速度可以用时间x表示出CQ的长,可根据三角形的面积计算公式得出y1,x的函数关系式;
(2)可先求出y2的函数式,然后根据其顶点坐标来确定k的取值.已知了P点走完AC用时8s,因此AC=8k,而AP=kx,CQ=x,那么可根据三角形的面积公式列出关于y2,x的函数关系式,进而可根据顶点坐标求出k的值;
(3)EF其实就是y2-y1,也就是三角形PCQ和CDQ的面积差即三角形PDQ的面积.得出EF的函数关系式后,根据自变量的取值以及函数的性质即可求出EF的最大值.
(1)∵,CD=3,CQ=x,
.图象如图所示:

(2),CP=8k-xk,CQ=x,

∵抛物线顶点坐标是(4,12),
.解得
则点P的速度每秒厘米,AC=12厘米;
(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积)
②由(2)得 .
∵EF=y2-y1
∴EF=
∵二次项系数小于0,
∴在范围,当时,最大.
点评:本题知识点多,综合性强,难度较大,一般是中考压轴题,主要考查学生对二次函数的熟练掌握情况.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点。

(1)求这个二次函数的解析式
(2)设该二次函数的对称轴与轴交于点C,连结BA、BC,求△ABC的面积。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线形的拱桥在正常水位时,水面AB的宽为20m.涨水时水面上升了3m,达到了警戒水位,这时水面宽CD=10m.

(1)求抛物线的解析式;
(2)当水位继续以每小时0.2m的速度上升时,再经过几小时就到达拱顶?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分12分)
如图,已知抛物线y=x2+bx-3a过点A(1,0),B(0,-3),与x轴交于另一点C.

(1)求抛物线的解析式;
(2)若在第三象限的抛物线上存在点P,使△PBC为以点B为直角顶点的直角三角形,求点P的坐标;
(3)在(2)的条件下,在抛物线上是否存在一点Q,使以PQBC为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线.
(1)它与x轴的交点的坐标为_______;
(2)在坐标系中利用描点法画出它的图象;
(3)将该抛物线在轴下方的部分(不包含与轴的交点)记为G,若直线G 只有一个公共点,则的取值范围是_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y=+3向右平移2个单位后,得到的新抛物线解析式是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

日常生活中,“老人”是一个模糊概念.有人想用“老人系数”来表示一个人的老年化程度.他设想“老人系数”的计算方法如表:
人的年龄x(岁)
x≤60
60<x<80
x≥80
该人的“老人系数”
0

1
按照这样的规定,一个70岁的人的“老人系数”为            

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过
(1)求此抛物线的解析式;
(2)求出顶点的坐标,连接,求证△∽△
(3)在直线上方的抛物线上是否存在一点M,使S最大,求出M的坐标;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线)与轴交于点( 0,4) ,与轴交于点,点的坐标为(4,0).

(1) 求该抛物线的解析式;
(2) 点是线段上的动点,过点,交于点,连接. 当的面积最大时,求点的坐标;
(3)若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为(2,0). 问: 是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案