精英家教网 > 初中数学 > 题目详情

对于代数式①abc;②x+1-;③;④;⑤m+n,下列结论正确的是

[  ]

A.①、③是单项式

B.②是二次三项式

C.②、④、⑤是多项式

D.①、⑤是整式

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.
(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;

(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;
(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,也可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=
1
2
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3

(2)对于0°<A<180°,∠A的正对值sadA的取值范围是
0<sadA<2
0<sadA<2

(3)如图,已知sinA=
3
5
,其中A为锐角,试求sadA的值;
(4)设sinA=k,请直接用k的代数式表示sadA的值为
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中数学 来源: 题型:

我国古籍《周髀算经》中早有记载“勾三股四弦五”,下面我们来探究两类特殊的勾股数.
(1)通过观察完成下面两个表格中的空格(以下a、b、c为Rt△ABC的三边,且a<b<c):

(2)我们发现,表一中a为大于l的奇数,此时b、c的数量关系是
b+1=c
b+1=c
;表二中a为大于4的偶数,此时b、c的数量关系是
b+2=c
b+2=c

(3)一般地,对于表一,用含a的代数式表示b=
a2-1
2
a2-1
2
;对于表二,用含a的代数式表示b=
a2
4
-1
a2
4
-1

(4)我们还发现,表一中的三边长“3,4,5”与表二中的“6,8,10”成倍数关系,表一中的“5,l2,13”与表二中的“10,24,26”恰好也成倍数关系….请直接利用这一规律计算:在Rt△ABC中,当a=
3
5
,b=
4
5
时,斜边c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

定义一种对于三位数
.
abc
(a、b、c不完全相同)的“F运算”:重排
.
abc
的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如
.
abc
=213
时,则

(1)579经过三次“F运算”得
495
495

(2)假设
.
abc
中a>b>c,则
.
abc
经过一次“F运算”得
99(a-c)
99(a-c)
(用代数式表示);
(3)猜想;任意一个三位数经过若干次“F运算’’都会得到一个定值
495
495
,请证明你的猜想.

查看答案和解析>>

同步练习册答案