精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.
分析:(1)如图,连接OD,首先由DE⊥DB,⊙O是△BDE的外接圆,证明BE是直径,点O是BE的中点,由∠C=90°得到∠DBC+∠BDC=90°,由BD为∠ABC的平分线得到∠ABD=∠DBC,又OB=OD,利用等腰三角形的性质得到∠ABD=∠ODB,然后等量代换即可证明题目结论;
(2)首先利用勾股定理求出BE=2
5
,OE=
5
,然后利用已知条件证明△ADB∽△AED,利用等腰三角形的性质得到
AD=2AE,在Rt△AOD中由AO2=OD2+AD2,可以列出关于AE的方程,解方程即可解决问题.
解答:(1)证明:连接OD,
∵DE⊥DB,⊙O是△BDE的外接圆,
∴BE是直径,点O是BE的中点,
∵∠C=90°,
∴∠DBC+∠BDC=90°,
又BD为∠ABC的平分线,
∴∠ABD=∠DBC,
∵OB=OD,
∴∠ABD=∠ODB,
则∠ODB+∠BDC=90°即∠ODC=90°
又∵OD是⊙O的半径,
∴AC是⊙O的切线.(方法不唯一,参照给分)

(2)解:∵DE⊥DB,DE=2,BD=4,
BE=2
5
,OE=
5

∴∠ABD=∠ADE,又∠A为公共角,
∴△ADB∽△AED,则有
AE
AD
=
ED
DB
=
2
4

∴AD=2AE,
在Rt△AOD中,AO2=OD2+AD2
即(
5
+AE)2=(
5
2+(2AE)2
解得AE=
2
3
5
或AE=0(舍去),
所以AE=
2
3
5
点评:本题综合考查了切线的性质和判定、相似三角形的性质与判定、角平分线的性质及勾股定理的综合运用.综合性比较强,对于学生的能力要求比较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案