精英家教网 > 初中数学 > 题目详情
13.如图,在四边形ABCD中,AB=CE,BE=CD,AB⊥BC于点B,DC⊥BC于点C,请判断AE和DE的数量关系及位置关系,并说明理由.

分析 根据已知条件可证得△ABE≌△ECD,由全等三角形的性质可知AE=DE,∠AEB=∠EDC,而∠EDC+∠DEC=90°,所以∠AEB+∠DEC=90°即AE⊥DE.

解答 解:AE=DE且AE⊥DE,
∵AB⊥BC,DC⊥BC,
∴∠B=∠C=90°,
在RT△ABE和RT△ECD中,
∵$\left\{\begin{array}{l}{AB=EC}\\{∠B=∠C=90°}\\{BE=CD}\end{array}\right.$,
∴△ABE≌△ECD(SAS),
∴AE=DE,∠AEB=∠EDC,
∵∠EDC+∠DEC=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°,即AE⊥DE,
故AE=DE且AE⊥DE.

点评 本题主要考查全等三角形的判定和性质,本题求证△ABE≌△ECD是基础,利用互余、互补性质是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.请你用学习“一次函数”时积累的经验和方法解决下列问题:
(1)在平面直角坐标系中,画出函数y=|x|的图象:
①列表填空:
x-3-2-10123
y
②描点、连线,画出y=|x|的图象;
(2)结合所画函数图象,写出y=|x|两条不同类型的性质;
(3)写出函数y=|x|与y=|x+2|图象的平移关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)$\sqrt{18}$-$\frac{2}{\sqrt{2}}$+(1-$\sqrt{2}$)+($\frac{1}{2}$)-1
(2)($\frac{1}{2}$)-1+($\sqrt{2}$-1)0×$\root{3}{-8}$-|1-$\sqrt{5}$|;
(3)(a+2)2-a(1-a)-(2-3a)(a+2);
(4)($\frac{x+2}{x-2}+\frac{4}{{{x^2}-4x+4}}$)÷$\frac{x}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,已知抛物线C1:y=-(x-1)2+4与x轴交于A、B两点,将抛物线C1沿x轴翻折后,再作适当平移得到抛物线C2,且抛物线C2的顶点恰好在B点,抛物线C2与抛物线C1交于点Q.

(1)请直接写出抛物线C2的表达式,并判断Q点是否为抛物线C1的顶点;
(2)将抛物线C2沿抛物线C1平移得到抛物线C3,始终保证抛物线C3的顶点P在第一象限的抛物线C1上,抛物线C3与抛物线C1交于点Q.
①如图2,若△APQ为直角三角形,求抛物线C3的解析式;
②如图3,过点P作AQ的平行线交x轴于点D,是否存在这样的抛物线C3,使得四边形ADPQ为等腰梯形?若存在,请求抛物线C3的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,在四边形ABCD中,BC∥AD,∠A=90°,BC<AD,E为AD的中点,F为CD的中点,P是一动点,从点A开始沿AB-BC匀速运动,到达点C即止,记点P运动的时间为x,四边形PEFC的面积为y,y与x关系所反映的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ACB为等腰直角三角形,∠ACB=90°,AC=BC,AE平分∠BAC,∠CDA=45°.求证:AD⊥BD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,Rt△OAB的斜边OB在x轴的正半轴上,点A在第一象限,将△OAB,使点O按逆时针方向旋转至△OA′B′,使点A的对应点A′落在y轴的正半轴上,已知OB=2,∠AOB=30°.
(1)求点A和点B′的坐标;
(2)判断点B、B′、A是否在同一直线上并说明理由.
(3)点M在坐标平面内,若△MOB与△AOB全等,画出图形并直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图1,△ABC为等边三角形,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转60°得到线段CN,连接BN,直线BN交射线AE于点D.
(1)直接写出直线BD与射线AE相交所成锐角的度数;
(2)如图2,当射线AE与AC的夹角∠EAC为钝角时,其他条件不变,(1)中结论是否发生变化?如果不变,加以证明;如果变化,请说明理由;
(3)如图3,在等腰Rt△ABC中,∠ACB=90°,射线AE交BC于点H,∠EAC=15°,点M是射线AE上任意一点(M不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,连接BN,直线BN交射线AE于点D.G,F分别是AH,AB的中点.求证:CD=GF.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如果a2-ab-4c是一个完全平方式,那么c等于(  )
A.$\frac{1}{4}$b2B.-$\frac{1}{8}$b2C.$\frac{1}{16}$b2D.-$\frac{1}{16}$b2

查看答案和解析>>

同步练习册答案