分析 根据已知条件可证得△ABE≌△ECD,由全等三角形的性质可知AE=DE,∠AEB=∠EDC,而∠EDC+∠DEC=90°,所以∠AEB+∠DEC=90°即AE⊥DE.
解答 解:AE=DE且AE⊥DE,
∵AB⊥BC,DC⊥BC,
∴∠B=∠C=90°,
在RT△ABE和RT△ECD中,
∵$\left\{\begin{array}{l}{AB=EC}\\{∠B=∠C=90°}\\{BE=CD}\end{array}\right.$,
∴△ABE≌△ECD(SAS),
∴AE=DE,∠AEB=∠EDC,
∵∠EDC+∠DEC=90°,
∴∠AEB+∠DEC=90°,
∴∠AED=90°,即AE⊥DE,
故AE=DE且AE⊥DE.
点评 本题主要考查全等三角形的判定和性质,本题求证△ABE≌△ECD是基础,利用互余、互补性质是关键.
科目:初中数学 来源: 题型:解答题
| x | … | -3 | -2 | -1 | 0 | 1 | 2 | 3 | … |
| y | … | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$b2 | B. | -$\frac{1}{8}$b2 | C. | $\frac{1}{16}$b2 | D. | -$\frac{1}{16}$b2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com