精英家教网 > 初中数学 > 题目详情

如图,直线AB与直线CD相交于点O,OE⊥AB,OF平分∠AOD,∠COE=28°.
求∠AOC和∠DOF的度数.

解:∵OE⊥AB,
∴∠BOE=90°,
∴∠BOC=∠BOE+∠COE=90°+28°=118°,
∴∠AOC=180°-∠BOC=180°-118°=62°;
∠AOD=∠BOC=118°,
又OF平分∠AOD,
∴∠DOF=∠AOD=×118°=59°.
分析:由已知可求出∠BOC=90°+28°=118°,再根据邻补角定义可求出∠AOC;根据对顶角相等可求出∠AOD=∠BOC=118°,再由OF平分∠AOD,可求出∠DOF的度数.
点评:本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•盘锦)如图,直线y=
m3
x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=数学公式x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-相似的判定解答题(带解析) 题型:解答题

如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:2011年辽宁省盘锦市中考数学试卷(解析版) 题型:解答题

如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-相似的判定解答题(解析版) 题型:解答题

如图,直线y=x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.

(1)求直线AC的解析式;

(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;

(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

 

查看答案和解析>>

同步练习册答案