分析 连接AC、BD,根据三角形的中位线求出HG、GF、EF、EH的长,再求出四边形EFGH的周长即可.
解答 解:如图,连接AC、BD,![]()
∵四边形ABCD是矩形,
∴AC=BD=8cm,
∵E、F、G、H分别是AB、BC、CD、DA的中点,
∴HG=EF=$\frac{1}{2}$AC=4cm,EH=FG=$\frac{1}{2}$BD=4cm,
∴四边形EFGH的周长等于4cm+4cm+4cm+4cm=16cm,
故答案为:16.
点评 本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=(x+2)2+3 | B. | y=(x-2)2+3 | C. | y=(x+2)2-3 | D. | y=(x-2)2-3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com